Effects of Temperature and Hydraulic Retention Time on Acetotrophic Pathways and Performance in High-Rate Sludge Digestion

2014 ◽  
Vol 48 (11) ◽  
pp. 6468-6476 ◽  
Author(s):  
Dang Ho ◽  
Paul Jensen ◽  
Damien Batstone

2016 ◽  
Vol 73 (12) ◽  
pp. 2904-2912 ◽  
Author(s):  
D. Güven ◽  
E. Ubay Çokgör ◽  
S. Sözen ◽  
D. Orhon

Abstract High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification–denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration.



2013 ◽  
Vol 726-731 ◽  
pp. 2567-2571
Author(s):  
Chun Juan Dong ◽  
Qing Ye Pan ◽  
Hong Yu Lu ◽  
Ya Quan Sun

To accomplish rapidly the granulation process of digestion sludge for the treatment of actual coking wastewater and meanwhile achieve high COD, phenol, SCN- and CN- removal, the EGSB reactor was employed with two operation stages. StageI: Granular sludge was formed from digestion sludge using brewery wastewater as substrate in the anaerobic way (meanwhile adding little granules, which were 1/7 of the total biomass). StageII: Granular sludge was acclimatized with the actual coking wastewater through continuous micro-oxygenation way. The experimental results showed that the granular sludge could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules. It took only about 6 months for the successful micro-aerobic acclimating of the granular sludge by the actual coking wastewater. The removal efficiencies of COD, phenol, SCN- and CN- were 72.9, 99.5, 95.7 and 97.5%, respectively, at 12.1h hydraulic retention time (HRT) and for 631-922, 12.8-37.7, 66.7-232.7 and 0.3-57.8mg.L-1 influent COD, phenol, SCN- and CN- concentration.



2020 ◽  
Vol 82 (6) ◽  
pp. 1184-1192
Author(s):  
Graziele Ruas ◽  
Sarah Lacerda Farias ◽  
Priscila G. Scarcelli ◽  
Mayara L. Serejo ◽  
Marc A. Boncz

Abstract The influence of CO2 addition and hydraulic retention time (5 and 7 days) on removal of Pseudomonas aeruginosa, Clostridium perfringens, Staphylococcus sp., Enterococcus sp., and Escherichia coli was evaluated in a system with three parallel 21 L high rate algal ponds. Both the addition of CO2 and an increase in HRT had no significant influence on bacterial removal, but bacterial removal was higher than found in previous studies. The removal was 3.4–3.8, 2.5–3.7, 2.6–3.1, 2.2–2.6 and 1.3–1.7 units log for P. aeruginosa, E. coli, Enterococcus sp., C. perfringens, and for Staphylococcus sp., respectively. Although CO2 addition did not increase disinfection, it did significantly increase biomass productivity (by ≈60%) and settleability (by ≈350%). Additionally, even at the lower 5-day hydraulic retention time, CO2 addition improves removal of chemical oxygen demand (COD), total organic carbon (TOC), total organic nitrogen and phosphorus by 97, 91, 12 and 50%, respectively.



1991 ◽  
Vol 24 (8) ◽  
pp. 133-155 ◽  
Author(s):  
James C. Young

Anaerobic filters have been used for almost twenty years to treat a variety of industrial wastes, yet until recently little was known about the factors affecting their design and performance. Tests with laboratory and full-scale plants operated under a variety of conditions have identified hydraulic retention time as the most important design and performance parameter. Influent waste strength and reactor height have essentially no effect on treatment efficiency when operating at a given hydraulic retention time. Media specific surface area and the orientation of the media seem to have a minor effect on performance but the benefit generally is not sufficient to justify increasing the specific surface area beyond about 100 m2/m3. Effluent recycle provides only a small improvement in treatment efficiency but may be beneficial to reduce the need for adding chemicals for pH control. A performance model is presented that can be used for obtaining approximate reactor sizes.



2006 ◽  
Vol 102 (4) ◽  
pp. 328-332 ◽  
Author(s):  
Jung Kon Kim ◽  
Baek Rock Oh ◽  
Young Nam Chun ◽  
Si Wouk Kim


2017 ◽  
Vol 228 (11) ◽  
Author(s):  
H. Guven ◽  
M. E. Ersahin ◽  
R. K. Dereli ◽  
H. Ozgun ◽  
D. Sancar ◽  
...  


2006 ◽  
Vol 54 (9) ◽  
pp. 27-33 ◽  
Author(s):  
T. Mao ◽  
K.-Y. Show

A major limitation of anaerobic sludge digestion is the long hydraulic retention time (HRT) required for satisfactory stabilization which results in large digester size. This study explored a possibility of operating digesters at shortened HRTs by sonication pretreatment of secondary sludges. Four identical digesters designated D1, D2, D3 and D4 were fed with untreated and sludge sonicated at densities of 0.18 W/ml, 0.33 W/ml and 0.52 W/ml, respectively. All digesters were operated at three HRTs of 8-day, 4-day and 2-day. Comparing with the control digester (D1), total solids removal efficiencies improved by 12–19%, 17–36% and 20–39% in digesters D2, D3 and D4, respectively. The volatile solids removal was also increased by 11–21%, 17–33% and 19–36% in the respective digesters. The improved solids degradation corresponded with increase in biogas production by 1.4–2.5, 1.9–3.0 and 1.6–3.1 times, respectively. Increase in methane composition by 2–17% was also noted in all digesters fed with sonicated sludge. An analysis indicated that sonication pretreatment could enhance degradation of carbon, nitrogen and sulfur substances in the digestion. The study suggested that sonication of sludge is a possible pretreatment to shorten the digester operating HRT with improvement in solids degradation, biogas production and methane content. It can be deduced that to maintain a consistent solids loading at a desire performance, sludge digester with smaller size can be designed.



Sign in / Sign up

Export Citation Format

Share Document