total organic nitrogen
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Barisiale Baranu ◽  
Chimezie Ogugbue ◽  
Gideon Okpokwasilli

This study identified the efficacy of different amendments as biostimulants in bioremediation. This experiment was carried out for 4 weeks in the laboratory. One kilogram of pristine soil was spiked with one liter of crude oil in earthen pots, to each pot 10 grams of amendments were added and mixed thoroughly. The amendments used were poultry dropping (C-PD), cow dung (D-CD), N.P.K (E), and a control (A and B) setup undergoing natural attenuation. The microcosms’ initial physicochemical characteristics such as total organic nitrogen, pH, temperature, total organic carbon, total petroleum hydrocarbon (TPH), and polyaromatic hydrocarbon (PAH). The microbial enumeration was done for total heterotrophic bacteria (THB) and hydrocarbon utilizing bacteria (HUB). The molecular characterization of the pristine soil (A) and contaminated soil (B) was also done using the shotgun analysis. The THB of A and B was 1.3 x 107 and 2.1 x 102 while the HUB was 1.63 x 105 and 1.1 x 101on day 1 respectively. The THB of treatments during bioremediation at week 2 was 1.75 x 108, 1.89 x 108, 1.5 x 108 and 2.2 x 108 while at week 4, the THB was 1.90 x 108, 2.1 x 108, 2.20 x 108 and 2.25 x 108 while the HUB at week 2 was 1.20 x 105, 3.0 x 105, 2.5 x 105 and 1.98 x 105 while at week 4, the HUB was 2.0 x 106, 2.19 x 106, 2.46 x 106 and 2.1 x 106 for B, PD, CD ,and N.P.K respectively. The molecular characterization of A and B showed there was a higher microbial diversity in the contaminated soil than in the pristine soil. This study has shown that cow dung is more effective in the bioremediation of total petroleum hydrocarbon, and polyaromatic hydrocarbon in crude oil-contaminated soil.


2021 ◽  
Author(s):  
Haniyeh Ebadzadeh ◽  
Mehdi Ghodrati Shojaei ◽  
Jafar Seyfabadi

Abstract Structural complexity of mangrove forests are thought to provide critical habitats for a variety of invertebrates. We studied the influence of mangrove structure and seasonality on the gastropod diversity in the extreme mangrove ecosystem of the Persian Gulf. Sampling was conducted in two successive years (February and June 2018, February and June 2019) at two mangrove habitats i.e., pneumatophore zone and mudflats. The communities were characterized by the dominance of specific taxa and the comparably low species richness. In total, 18 taxa were identified, including 14 species occurring in the mangrove forest and 16 species in the mudflats. Assimineidae dominated the community in both mangrove habitats. Mean density of gastropods was 1.5-fold higher in the pneumatophore zone (86.12±135.21 ind.m-2) than in the mudflats (54.33±108.69 ind.m-2). Species such as Haminoea vitrea, Peronia verruculata, Assiminea mesopotamica and Platevindex tigrinus were found to benefit from the presence of pneumatophores, which highlights the importance of local habitat complexity. Gastropod communities varied significantly between the habitats, but there was little difference in the community structure between seasons. Distance-based linear models revealed that total organic carbon and total organic nitrogen best explained the variation in gastropods community structure.


2021 ◽  
Vol 9 (11) ◽  
pp. 1304
Author(s):  
Pengyuan Liu ◽  
Haikun Zhang ◽  
Zenglei Song ◽  
Yanyan Huang ◽  
Xiaoke Hu

Little is known about the seasonal dynamic of archaeal communities and their potential ecological functions in temperate seagrass ecosystems. In this study, seasonal changes in diversity, community structure, and potential metabolic functions of benthic archaea in surface sediments of two seagrass meadows along the northern Bohai Sea in China were investigated using Miseq sequencing of the 16S rRNA gene and Tax4Fun2 functional prediction. Overall, Crenarchaeota (mainly Bathy-15, Bathy-8, and Bathy-6) dominated, followed by Thermoplasmatota, Asgardarchaeota, and Halobacterota, in terms of alpha diversities and relative abundance. Significant seasonal changes in the entire archaeal community structure were observed. The major phyla Methanobacteria, Nitrosopumilales, and genus Methanolobus had higher proportions in spring, while MBG-D and Bathyarchaeota were more abundant in summer and autumn, respectively. Alpha diversities (Shannon and Simpson) were the highest in summer and the lowest in autumn (ANOVA test, p < 0.05). Salinity, total organic carbon, and total organic nitrogen were the most significant factors influencing the entire archaeal community. Higher cellulose and hemicellulose degradation potentials occurred in summer, while methane metabolism potentials were higher in winter. This study indicated that season had strong effects in modulating bsenthic archaeal diversity and functional potentials in the temperate seagrass ecosystems.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3053
Author(s):  
Shuming Mo ◽  
Jinhui Li ◽  
Bin Li ◽  
Muhammad Kashif ◽  
Shiqing Nie ◽  
...  

High sulfides concentrations can be poisonous to environment because of anthropogenic waste production or natural occurrences. How to elucidate the biological transformation mechanisms of sulfide pollutants in the subtropical marine mangrove ecosystem has gained increased interest. Thus, in the present study, the sulfide biotransformation in subtropical mangroves ecosystem was accurately evaluated using metagenomic sequencing and quantitative polymerase chain reaction analysis. Most abundant genes were related to the organic sulfur transformation. Furthermore, an ecological model of sulfide conversion was constructed. Total phosphorus was the dominant environmental factor that drove the sulfur cycle and microbial communities. We compared mangrove and non-mangrove soils and found that the former enhanced metabolism that was related to sulfate reduction when compared to the latter. Total organic carbon, total organic nitrogen, iron, and available sulfur were the key environmental factors that effectively influenced the dissimilatory sulfate reduction. The taxonomic assignment of dissimilatory sulfate-reducing genes revealed that Desulfobacterales and Chromatiales were mainly responsible for sulfate reduction. Chromatiales were most sensitive to environmental factors. The high abundance of cysE and cysK could contribute to the coping of the microbial community with the toxic sulfide produced by Desulfobacterales. Collectively, these findings provided a theoretical basis for the mechanism of the sulfur cycle in subtropical mangrove ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Lech W. Szajdak ◽  
Teresa Meysner ◽  
Marek Szczepański

The aim of this study is to comprehensively assess the change in oxidoreductive enzyme activities, due to the potential in catalyzing oxidation and reduction reactions, as the basic processes on undrained and drained peat soils. On undrained peatlands, a significant decrease of enzyme activities was observed such as xanthine oxidase, urate oxidase, phenol oxidase, and peroxidase with an increase in depth. It was connected with significantly higher porosity values, hot water extractable organic carbon, and total organic nitrogen contents, ammonium and nitrate ions concentrations, and significantly lower ash and bulk density values in the upper layers. On drained peatlands, a significant increase of enzyme activities in depth was measured. Enzyme activities such as xanthine, urate, phenol oxidase, and peroxidase were documented to be effective as new indicators and tools for changes of the moorsh-forming process in association with the oscillation of the water table caused by the drainage of the peatlands.


2020 ◽  
pp. 1-15
Author(s):  
Qian Zhang ◽  
Enpu Gong ◽  
Yongli Zhang ◽  
Changqing Guan

Abstract This study focuses on the Tianshifu Basin, eastern Liaoning, China, which is filled with Lower–Middle Jurassic fluviolacustrine sediments rich in macroplants. Our aim is to explore the continental climate features of the late Early Jurassic period. The composition of the Early–Middle Jurassic flora and the carbon isotopic ratios of organic matter, total organic carbon, total organic nitrogen and sulphur of the rock samples from the Changliangzi section (the upper part of the Lower Jurassic deposits) have been investigated. Based on the flora, eastern Liaoning was generally characterized by temperate and humid conditions during the Early–Middle Jurassic period, but with rising temperatures during late Early Jurassic time. The sediments of the Changliangzi section show a transformation from shallow-lake facies to deep-lake facies. A positive organic carbon isotope excursion correlates with the deepening of this palaeolake, considered to be caused by climate warming. The late Early Jurassic climate warming indicated by floral and isotopic evidence corresponds to the climatic events recorded elsewhere in marine and continental sequences during the Toarcian Age, the so-called Toarcian Anoxic event, and may be associated with enhanced global greenhouse warming. This study provides new continental data supporting global warming during the late Early Jurassic period.


Author(s):  
Nhu Da Le ◽  
Thi Phuong Quynh Le ◽  
Thi Xuan Binh Phung ◽  
Thi Thuy Duong ◽  
Orange Didier

Abstract. The Red River is a typical example of the Southeast Asian rivers, which has been strongly affected by human activities. This paper analyses the change of total suspended sediment (TSS) load of the Red River from 1960 to 2015 in which numerous new dams in both China and Vietnam have been constructed. A strong decrease of TSS load of the whole Red River (from 79±26×106 t yr−1 in 1960s to 6±1×106 t yr−1 in 2010s) allocated to the dam impoundments in spite of population and deforestation increase. Base on the experimental equation describing the relationship between TSS and total organic nitrogen (TON) concentrations, and on the available data of TSS concentration and river discharge, the longterm TON concentrations and fluxes were calculated for the three tributaries and the whole Red River. The annual average of TON concentrations spatially varied from 0.41 to 3.19 mg L−1, averaging 0.98 mg L−1 for the whole period; the lowest was found for the Da River where the new dams have been impounded. The highest TON concentrations and fluxes occurred in the wet season in relationship with the highest sediment loads and river discharges. The riverine TON fluxes transferred to estuary significantly decreased from 141×103±38×103 t yr−1 (equivalent to 902±247 kg km−2 yr−1) in 1960s to 32×103±5×103 t yr−1 (equivalent to 207±35 kg km−2 yr−1) in 2010s. The TSS flux decrease has driven a clear reduction of associated elements like nitrogen, which let to hypothesis a change in biogeochemical processes in the coastal zone.


2020 ◽  
Vol 82 (6) ◽  
pp. 1184-1192
Author(s):  
Graziele Ruas ◽  
Sarah Lacerda Farias ◽  
Priscila G. Scarcelli ◽  
Mayara L. Serejo ◽  
Marc A. Boncz

Abstract The influence of CO2 addition and hydraulic retention time (5 and 7 days) on removal of Pseudomonas aeruginosa, Clostridium perfringens, Staphylococcus sp., Enterococcus sp., and Escherichia coli was evaluated in a system with three parallel 21 L high rate algal ponds. Both the addition of CO2 and an increase in HRT had no significant influence on bacterial removal, but bacterial removal was higher than found in previous studies. The removal was 3.4–3.8, 2.5–3.7, 2.6–3.1, 2.2–2.6 and 1.3–1.7 units log for P. aeruginosa, E. coli, Enterococcus sp., C. perfringens, and for Staphylococcus sp., respectively. Although CO2 addition did not increase disinfection, it did significantly increase biomass productivity (by ≈60%) and settleability (by ≈350%). Additionally, even at the lower 5-day hydraulic retention time, CO2 addition improves removal of chemical oxygen demand (COD), total organic carbon (TOC), total organic nitrogen and phosphorus by 97, 91, 12 and 50%, respectively.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1205 ◽  
Author(s):  
Jackeline do S. B. Barbosa ◽  
Valéria R. Bellotto ◽  
Damiana B. da Silva ◽  
Thiago B. Lima

This research investigated the source and fate of different chemical species of N and P on a deep tropical urban reservoir, the artificial Lake Paranoá, located in the city of Brasilia (Brazil). To determine an N and P budget, nutrient input from the external load (four main tributaries and two wastewater treatment plants), internal load (from sediment) and nutrient output (from a downstream dam) were estimated empirically. Nutrient storage was evaluated in two compartments: water column and sediment. Nutrient input from the tributaries varied by season presenting higher loads in the wet season, especially N. Nutrient budgets in our study indicated that Lake Paranoá retained dissolved inorganic nitrogen (DIN), PO43−-P, total organic phosphorus (TOP) and exported total organic nitrogen (TON), both on a seasonal and annual scale. Surface sediment is the major storage compartment for both N and P. These results show the pressing need for action to reduce the P outcome charges, mainly, from the wastewater treatment plants. The data here presented contributes to the recognition of this situation and to a better comprehension of these nutrient dynamics, as well as an understanding of the behavior of tropical deep-water reservoirs. This can help to promote more effective management, providing a reference for other similar systems.


2018 ◽  
Author(s):  
◽  
Siphesihle Mangena Khumalo

South Africa is not an exception when it comes to the issue of fresh water scarcity perpetuated by environmental pollution among many other factors. Industrial wastewater particularly emanating from the brewing industry, contains high-strength organic, inorganic, and biological compounds which are toxic to the environment. Due to stringent industrial effluent dewatering standards enforced by both local and international environmental protection entities, industrial wastewater cannot be discharged into receiving water bodies prior to treatment. The overall aim of this study was to evaluate the performance or treatment efficacy of a laboratory scale sequencing batch reactor on biological nutrient removal using industrial wastewater from brewery. In this study, two laboratory scale sequencing batch reactors (SBRs) operated in a cyclic aerobic-anaerobic configuration inoculated with activated sludge were investigated for their removal of orthophosphates and nitrogen compounds from brewery wastewater. SBR-1 was investigated for nitrogen group pollutant removal and SBR-2 was investigated for orthophosphate removal. The findings of the study are reported based on overall removal efficacies for the following process monitoring parameters: orthophosphates, ammoniacal nitrogen, total Kjeldahl nitrogen, total nitrogen, total organic nitrogen, total inorganic nitrogen and NO3-N+NO2-N. From the investigation, the following overall removal efficacies were obtained: 69% orthophosphates, 69% ammoniacal nitrogen, 59% total Kjeldahl nitrogen, 60% total nitrogen, 64% total organic nitrogen, 67% total inorganic nitrogen and 56% NO3-N+NO2-N at an organic loading rate of 3.17 kg Total Chemical Oxygen Demand (TCOD) /m3.day with a food to microorganism ratio of 2.86 g TCOD/g Volatile Suspended Solids (VSS).day. These removal efficacies were attained for a hydraulic retention time of 18 hours for both SBRs with a solids retention time of 5 days for SBR-1 and 7 days for SBR-2. Both reactors were operated at a mesophilic temperature range of 23 to 26˚C and a pH range of 5 to 8.5. The temperature was left unadjusted because it was observed that it did not hinder any microbial activities during the biodegradation process. The Michealis-Menten’s and Monod models were implemented to study the substrate utilisation rate kinetics and microbial growth rate kinetics recording 15 141 g COD/m3.day; 12 518 g VSS/g VSS.day; 20 343 g COD/m3.day and 16 860 g VSS/g VSS.day for SBR-1 and SBR-2, respectively. The Monod model demonstrated a strong correlation fit between the substrate utilisation rate and microbial growth rate recording a polynomial correlation constant of R2 = 0.947 and 0.9582 for SBR-1 and SBR-2, respectively. The findings of this study showed that the cyclic aerobic-anaerobic configuration on a laboratory scale SBR inoculated with activated sludge for treatment of brewery wastewater for biological nutrients was feasible.


Sign in / Sign up

Export Citation Format

Share Document