Magnetic Properties of Largest-Spin Single Molecule Magnets: Mn17Complexes—A Density Functional Theory Approach

2010 ◽  
Vol 49 (20) ◽  
pp. 9641-9648 ◽  
Author(s):  
Eduard Cremades ◽  
Eliseo Ruiz
2013 ◽  
Vol 91 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Silvia Gómez-Coca ◽  
Eliseo Ruiz

The exchange coupling constants of a Mn14 complex constituted by two weakly coupled Mn7 moieties were calculated using two different density functional theory (DFT) approaches: the Perdew–Burke–Ernzerhof (PBE) functional with a numerical basis set and the hybrid Becke, three-parameter Lee–Yang–Parr (B3LYP) functional employed with a Gaussian basis set. The sign and relative strength of the exchange coupling constants calculated with both methods were consistent; as expected, the values calculated with the PBE functional were slightly overestimated, as corroborated by comparison with the experimental magnetic susceptibility curve. Both methods gave a ground spin configuration of S = 3/2 for the Mn7 moiety, which was weakly antiferromagnetically coupled with the other Mn7 fragment, leading to an S = 0 ground spin configuration for the entire Mn14 complex.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


Sign in / Sign up

Export Citation Format

Share Document