Theoretical analysis of nonconventional hydrogen-bonded structures in ion-molecule complexes

1991 ◽  
Vol 95 (3) ◽  
pp. 1213-1220 ◽  
Author(s):  
E. M. Evleth ◽  
Z. D. Hamou-Tahra ◽  
E. Kassab

2007 ◽  
Vol 135 (1-3) ◽  
pp. 90-95 ◽  
Author(s):  
T. Vishwam ◽  
M. Chitra ◽  
V. Subramanian ◽  
V.R.K. Murthy




2001 ◽  
Vol 355 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Marcus C. DURRANT

Qualitative molecular modelling has been used to identify possible routes for transfer of protons from the surface of the nitrogenase protein to the iron–molybdenum cofactor (FeMoco) and to substrates during catalysis. Three proton-transfer routes have been identified; a water-filled channel running from the protein exterior to the homocitrate ligand of FeMoco, and two hydrogen-bonded chains to specific FeMoco sulphur atoms. It is suggested that the water channel is used for multiple proton deliveries to the substrate, as well as in diffusion of products and substrates between FeMoco and the bulk solvent, whereas the two hydrogen-bonded chains each allow a single proton to be added to, and subsequently depart from, FeMoco during the catalytic cycle. Possible functional differences in the proton-transfer channels are discussed in terms of assessment of the protein environment and specific hydrogen-bonding effects. The implications of these observations are discussed in terms of the suppression of wasteful production of dihydrogen by nitrogenase and the Lowe–Thorneley scheme for dinitrogen reduction.



Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.



2001 ◽  
Vol 84 (7) ◽  
pp. 27-36
Author(s):  
Aki Yuasa ◽  
Daisuke Itatsu ◽  
Naoki Inagaki ◽  
Nobuyoshi Kikuma


2001 ◽  
Vol 123 (7) ◽  
pp. 1545-1546
Author(s):  
James S. Nowick ◽  
De Michael Chung ◽  
Kalyani Maitra ◽  
Santanu Maitra ◽  
Kimberly D. Stigers ◽  
...  


1997 ◽  
Vol 2 (2) ◽  
pp. 118-124
Author(s):  
Geoffrey Hall

Patients who have undergone several sessions of chemotherapy for cancer will sometimes develop anticipatory nausea and vomiting (ANV), these unpleasant side effects occurring as the patients return to the clinic for a further session of treatment. Pavlov's analysis of learning allows that previously neutral cues, such as those that characterize a given place or context, can become associated with events that occur in that context. ANV could thus constitute an example of a conditioned response elicited by the contextual cues of the clinic. In order to investigate this proposal we have begun an experimental analysis of a parallel case in which laboratory rats are given a nausea-inducing treatment in a novel context. We have developed a robust procedure for assessing the acquisition of context aversion in rats given such training, a procedure that shows promise as a possible animal model of ANV. Theoretical analysis of the conditioning processes involved in the formation of context aversions in animals suggests possible behavioral strategies that might be used in the alleviation of ANV, and we report a preliminary experimental test of one of these.



Sign in / Sign up

Export Citation Format

Share Document