Electrochemical preparation of ultrathin polypyrrole film at microarray electrodes

1991 ◽  
Vol 95 (23) ◽  
pp. 9042-9044 ◽  
Author(s):  
M. Nishizawa ◽  
M. Shibuya ◽  
T. Sawaguchi ◽  
T. Matsue ◽  
I. Uchida
Nanoscale ◽  
2014 ◽  
Vol 6 (15) ◽  
pp. 9148-9156 ◽  
Author(s):  
Joyashish Debgupta ◽  
Ramireddy Devarapalli ◽  
Shakeelur Rahman ◽  
Manjusha V. Shelke ◽  
Vijayamohanan K. Pillai

Heterojunction (type II) of self standing, vertically aligned CdSe NTs (n-type) with electrodeposited Cu2O (p-type) exhibits excellent photoresponse, resulting from enhanced absorption of light and faster transport of photogenerated charge carriers by CdSe NTs.


1995 ◽  
Vol 73 (9) ◽  
pp. 1427-1435 ◽  
Author(s):  
Zhiping Deng ◽  
David C. Stone ◽  
Michael Thompson

Poly N-(2-cyanoethyl)pyrrole films have been synthesized by electrochemical polymerization and characterized by cyclic voltammetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Polymeric coatings prepared on the surface of a thickness-shear-mode acoustic wave sensor have been used to examine response selectivity to a number of gas-phase probe molecules. The responses of the poly N-(2-cyanoethyl)pyrrole based sensor are compared with the parent polypyrrole device and rationalized in terms of the molecular interactions between probes and polymer films. The polar cyano functionality enhances interactions with analytes such as acetonitrile. Keywords: gas sensor, thickness-shear-mode acoustic wave sensor, poly N-(2-cyanoethyl)pyrrole film, polypyrrole film, conducting polymer.


Nano Research ◽  
2021 ◽  
Author(s):  
Huabo Liu ◽  
Jiaxing Liang ◽  
John Watt ◽  
Richard D. Tilley ◽  
Rose Amal ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 518
Author(s):  
Margherita Longoni ◽  
Maria Sole Zalaffi ◽  
Lavinia de Ferri ◽  
Angela Maria Stortini ◽  
Giulio Pojana ◽  
...  

The electrochemical preparation of arrays of copper ultramicrowires (CuUWs) by using porous membranes as templates is critically revisited, with the goal of obtaining cheap but efficient substrates for surface enhanced Raman spectroscopy (SERS). The role of the materials used for the electrodeposition is examined, comparing membranes of anodized aluminum oxide (AAO) vs. track-etched polycarbonate (PC) as well as copper vs. glassy carbon (GC) as electrode material. A voltammetric study performed on bare electrodes and potentiostatic tests on membrane coated electrodes allowed the optimization of the deposition parameters. The final arrays of CuUWs were obtained by chemical etching of the template, with NaOH for AAO and CH2Cl2 for PC. After total etching of the template, SERS spectra were recorded on CuUWs using benzenethiol as SERS probe with known spectral features. The CuUW substrates displayed good SERS properties, providing enhancement factor in the 103–104 range. Finally, it was demonstrated that higher Raman enhancement can be achieved when CuUWs are decorated with silver nanostars, supporting the formation of SERS active hot-spots at the bimetallic interface.


Sign in / Sign up

Export Citation Format

Share Document