Determination of the reduction mechanism by temperature-programmed reduction: application to small iron oxide (Fe2O3) particles

1986 ◽  
Vol 90 (7) ◽  
pp. 1331-1337 ◽  
Author(s):  
O. J. Wimmers ◽  
P. Arnoldy ◽  
J. A. Moulijn
1999 ◽  
Vol 329 (1) ◽  
pp. 39-46 ◽  
Author(s):  
G Neri ◽  
A.M Visco ◽  
S Galvagno ◽  
A Donato ◽  
M Panzalorto

Fuel ◽  
1993 ◽  
Vol 72 (5) ◽  
pp. 703-704 ◽  
Author(s):  
C.E. Snape ◽  
S.C. Mitchell ◽  
R. Garcia ◽  
K. Ismall ◽  
K.D. Bartle

2016 ◽  
Vol 840 ◽  
pp. 381-385
Author(s):  
Tengku Shafazila Tengku Saharuddin ◽  
Alinda Samsuri ◽  
Fairous Salleh ◽  
Rizafizah Othaman ◽  
Mohammad Kassim ◽  
...  

The reduction behaviour of 3% cerium doped (Ce-Fe2O3) and undoped iron oxide (Fe2O3) by hydrogen in nitrogen (10%,v/v) and carbon monoxide in nitrogen (10%,v/v) atmospheres have been investigate by temperature programmed reduction (TPR). The phases formed of partially and completely reduced samples were characterized by X-ray diffraction spectroscopy (XRD). TPR results indicate that the reduction of Ce doped and undoped iron oxide in both reductants proceed in three steps reduction (Fe2O3 → Fe3O4 → FeO → Fe) with Fe3O4 and FeO were the intermediate. TPR results also suggested that by adding Ce metal into iron oxide the reduction to metallic Fe by using both reductant gaseous give better reducibility compare to the undoped Fe2O3. The reduction process of Ce and undoped Fe2O3 become faster when CO was used as a reductant instead of H2. Furthermore, in CO atmosphere, Ce-Fe2O3 give complete reduction to metallic iron at 700 0C which about 200 0C temperature lower than other samples. Meanwhile, XRD analysis indicated that Ce doped iron oxide composed better crystallite phases of Fe2O3 with higher intensity and a small amount of FeCe2O4.


Sign in / Sign up

Export Citation Format

Share Document