Study on the Reduction Behavior of Zirconia Supported Iron Oxide Catalysts by Temperature-Programmed Reduction Combined within SituMössbauer Spectroscopy

1996 ◽  
Vol 121 (1) ◽  
pp. 240-246 ◽  
Author(s):  
Kaidong Chen ◽  
Yining Fan ◽  
Zheng Hu ◽  
Qijie Yan
1999 ◽  
Vol 329 (1) ◽  
pp. 39-46 ◽  
Author(s):  
G Neri ◽  
A.M Visco ◽  
S Galvagno ◽  
A Donato ◽  
M Panzalorto

2000 ◽  
Vol 198 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
She-Tin Wong ◽  
Jyh-Fu Lee ◽  
Soofin Cheng ◽  
Chung-Yuan Mou

2017 ◽  
Vol 888 ◽  
pp. 404-408 ◽  
Author(s):  
Mohd Nor Latif ◽  
Alinda Samsuri ◽  
Mohamed Wahab Mohamed Hisham ◽  
Mohd Ambar Yarmo

Metallic molybdenum was synthesized through reduction of molybdenum trioxide (MoO3) by using hydrogen as a reducing agent. The reduction behavior of MoO3 were investigated by using temperature programmed reduction (TPR). The reduced phases were characterized by X-ray diffraction spectroscopy (XRD). The XRD results indicate that the reduction of MoO3 proceed in two steps reduction (MoO3 → MoO2 → Mo) with formation of intermediate phases of Mo4O11 during first step of reduction. However, the TPR results showed only one broad peak that correspond to all reduction step that was merge into one peak. It seem that, increasing the temperature cause the rapid reduction that correlated with thermodynamic consideration data that show the formation of metallic molybdenum is become feasible by increasing the temperature.


Fuel ◽  
2004 ◽  
Vol 83 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Thallada Bhaskar ◽  
Md Azhar Uddin ◽  
Akinori Muto ◽  
Yusaku Sakata ◽  
Yoji Omura ◽  
...  

2016 ◽  
Vol 840 ◽  
pp. 305-308
Author(s):  
Fairous Salleh ◽  
Tengku Shafazila Tengku Saharuddin ◽  
Alinda Samsuri ◽  
Rizafizah Othaman ◽  
Mohamed Wahab Mohamed Hisham ◽  
...  

The reduction behaviour of tungsten oxide has been studied by using temperature programmed reduction (TPR) and X-ray diffraction (XRD). The reduction behavior were examine by nonisothermal reduction up to 900 oC then continued with isothermal reduction at 900 oC for 45 min time under (40% v/v) carbon monoxide in nitrogen (CO in N2) atmosphere. The TPR signal clearly shows one peak attributed to formation of suboxide W18O49 (more) and WO2 (less) observed at 80 min. The reduction product was investigated by varying the holding reaction time. Based on the characterization of the reduction products by using XRD, it was found that, nonisothermal reduction of WO3 at temperature 900 oC partially converted to some W18O49 and WO2 phases. However, after increased the reaction holding time for 45 min, WO3 phases disappeared and converted to WO2 and W metal phases. It is obviously shows that by hold the reduction time could improve the reducibility of the sample oxide. Furthermore, it is suggested that reduction by using CO as reducing agent follows the consecutives steps WO3 → WO2.92 → W18O49 → WO2 → W.


Sign in / Sign up

Export Citation Format

Share Document