Determination of molecular weight and second virial coefficient of polydisperse nonideal polymer solutions by the sedimentation equilibrium method

1969 ◽  
Vol 73 (5) ◽  
pp. 1448-1454 ◽  
Author(s):  
Hiroyasu Utiyama ◽  
Nobuo Tagata ◽  
Michio Kurata
1968 ◽  
Vol 110 (2) ◽  
pp. 243-250 ◽  
Author(s):  
A. J. Haydon ◽  
A. R. Peacocke

1. The lysine-rich fraction (Ia+Ib, or f1) of calf thymus histones was isolated as the sulphate by acid extraction. 2. Sedimentation-equilibrium measurements with interference optics showed that this fraction was monodisperse with a molecular weight of 19500±2000. 3. The ‘apparent molecular weight’ calculated from the sedimentation-equilibrium studies varied markedly with concentration. The large second virial coefficient implied by such variation was attributed to the very high charge/mass ratio of this relatively small protein. Estimates of the charge were made from the values of this virial coefficient. 4. The very large value of the virial coefficient explains anomalies in the earlier reports of the molecular weight of this histone and also why the z-average molecular weight can appear to be lower than the weight-average molecular weight. 5. The differences of the specific refractive increments, and the partial specific volumes, between dialysed and undialysed solutions of this histone fraction could also be attributed to its high molecular charge, which was estimated from these differences and agreed, within the expected limits, with the value deduced from the second virial coefficient. 6. Sedimentation-velocity measurements combined with the known molecular weight imply that lysine-rich histone has a high frictional ratio and an extended shape. Optical-rotatory-dispersion measurements indicated that it had a low helical content.


2008 ◽  
Vol 86 (6) ◽  
pp. 503-511 ◽  
Author(s):  
Stephanie Beck-Candanedo ◽  
David Viet ◽  
Derek G Gray

The partitioning behaviour of dye-labeled dextrans of high molecular weight in aqueous suspensions of native cellulose nanocrystals was studied. Cellulose concentrations lie in the isotropic–nematic coexistence region. Blue dextrans of various molecular weights and degrees of substitution of dye molecules (anionic Cibacron blue 3G-A) were investigated. Increasing the total concentration of blue dextran and degree of dye substitution led to increasing partition coefficients. Increasing dextran molecular weight resulted in higher partition coefficients, in agreement with theory. Partition coefficients were larger than predicted theoretically using a second virial coefficient approximation. Electrostatic and entropic contributions to the partition coefficient of blue dextran are discussed. Dextrans labeled with neutral fluorescein isothiocyanate did not partition preferentially in this system.Key words: partition coefficient, cellulose nanocrystals, dextrans, degree of substitution, polyelectrolyte.


Sign in / Sign up

Export Citation Format

Share Document