RADIATION DECOMPOSITION OF SODIUM CHLORATE; COMPARISON OF YIELDS AND THE POST-IRRADIATION ANNEALING BEHAVIOR FOR IRRADIATION BY γ-RAYS AND α-PARTICLES

1963 ◽  
Vol 67 (10) ◽  
pp. 2229-2230 ◽  
Author(s):  
C. J. Hochanadel
2021 ◽  
Vol 2114 (1) ◽  
pp. 012009
Author(s):  
Thuraya A. Abdul Hussian ◽  
Anwar kh. Farman

Abstract Radiation is a form of energy, its emitted either in the form of particles such as α-particles and β-particles (beta particles including the electron and the positron) or waves such as sunlight, X-rays and γ-rays. Radiation found everywhere around us and it comes from many different sources naturally or man-made sources. In this study a questionnaire was distributed to people working in the field of X-rays that used for a medical imaging (X-ray and CT-scan) to evaluate the extent of awareness and knowledge in estimate the damage of ionizing radiation as a result of wrong use. The questionnaire was distributed to medical clinics in Al-Harithiya in Baghdad, which it’s considered as one of the important areas in Iraq to attract and treat patients. It’s found that most of the commitment of radiography clinics by safety and security procedures. Most of the radiology clinics abide by most of the Iraqi Ministry of Health laws. However, some clinics did not implement some of the security and safety conditions


Author(s):  
James Chadwick ◽  
M. Goldhaber

Some time ago we reported in ‘Nature’ the observation of a nuclear photo-effect, the disintegration of the deutron by γ-rays. An effect of y-rays upon complex nuclei might be expected to occur from analogy with the phenomena of excitation and ionization of atoms by light, and such an effect has been looked for from time to time by various investigators. A necessary condition to make disintegration possible is that the energy of the γ-ray quantum must be greater than the binding energy of the particle which is to be removed from the nucleus. The most energetic γ-rays which are readily available in sufficient intensity are those of thorium C", which have an energy hv — 2·62 x 10 6 electron volts. One can hope, therefore, using these γ-rays, to produce disintegration with the emission of a heavy particle, such as a neutron, proton, etc., only in those nuclei which have a small or negative mass defect, such as the nuclei of deuterium, beryllium, and those radioactive elements which emit α-particles. In fact, only the nuclei of deuterium and beryllium have so far been disintegrated in this way. The disintegration of beryllium by the γ-rays of radium was first reported by Szilard and Chalmers. No evidence of a photo-electric disintegration amongst the radioactive elements has yet been found.


2020 ◽  
Vol 22 ◽  
pp. 100727
Author(s):  
Zhaonan Ding ◽  
Chonghong Zhang ◽  
Xianlong Zhang ◽  
Yuguang Chen ◽  
Yitao Yang ◽  
...  

2000 ◽  
Vol 650 ◽  
Author(s):  
J. I. Cole ◽  
T. R. Allen ◽  
H. Kusanagi ◽  
K. Dohi ◽  
J. Ohta

ABSTRACTMicrostructural examination and in situ post-irradiation annealing studies were carried out on 20% cold-worked 316 stainless steel (SS) hexagonal duct material following irradiation in the reflector region of the EBR-II reactor. Stainless steel hexagonal ducts were used to house reactor subassemblies and provide a valuable source of information on irradiation behavior of reactor structural materials at lower dose-rates (on the order of 10-8 dpa/sec) than previously examined. The microstructural development of samples irradiated to doses of 1, 20 and 30 dpa is examined, while the post-irradiation annealing behavior of a sample irradiated to 20 dpa is described. Annealing studies were performed at 370 and 500°C to examine the kinetics of radiation damage recovery as a function of annealing temperature. The initial (pre-annealed) microstructures consists of a substantial density of irradiation induced chromium-rich M23C6 and M6C carbides which form both on the grain boundaries and within the grain interiors. Recovery of the cold- work is evident in the 1 dpa sample while samples irradiated to 20 and 30 dpa possess dense populations of voids and dislocation structures consisting of networks of line dislocations and faulted dislocation loops. Results indicate that post-irradiation annealing of the samples at 370°C for 1 hour has little effect on the microstructure, while further annealing at 500°C for 1 hour results in void shrinkage, the formation of small cavities, and a reduction in the dislocation loop and network density.


Sign in / Sign up

Export Citation Format

Share Document