Crystal structure and low-temperature proton NMR spectrum of tetramesityldiphosphine. Evidence for the anticonformational preference in tetraaryldiphosphines

1981 ◽  
Vol 103 (7) ◽  
pp. 1699-1702 ◽  
Author(s):  
S. G. Baxter ◽  
Alan H. Cowley ◽  
Raymond E. Davis ◽  
Paul E. Riley
1996 ◽  
Vol 51 (2) ◽  
pp. 263-266 ◽  
Author(s):  
Paul K. Baker ◽  
David J. Muldoona ◽  
Michael B. Hursthouseb ◽  
Simon J. Colesb ◽  
Aidan J. Laveryc ◽  
...  

Abstract The crystal structure of [WI2(CO)3(NCPh)2] (1) has been determined by X-ray methods. The crystals are orthorhombic, space group Pnam, a = 7.815(3), b = 13.839(5), c = 18.475(3) Å, Z = 8, R = 0.0346 for 1497 observed data. The complex [WI2(CO)3(NCPh)2] has a seven-coordinate geometry, which may be described as a distorted capped octahedron, with the two iodo-ligands mutually trans, while each nitrile is trans to a carbonyl group. The capped octahedral geometry consists of a capping carbonyl (C(10)} on the face defined by I(1), C(20) and C(20)#. However, the geom etry may also be described as a capped trigonal prism, which has one triangular face occupied by three carbonyl groups and the second triangular face occupied by N(1) , N (1)# and I(1) atoms, respectively. The iodide I(2) occupies the capping position on the rectangular face defined by the atoms C(20), C(20)#, N (1), and N (1)# . The low temperature 13C NMR spectrum (203 K, CD2Cl2) of 1 shows a single carbonyl resonance at 219.27 ppm which indicates that the complex is undergoing a rapid fluxional process in solution at 203 K.


2020 ◽  
Vol 96 (3s) ◽  
pp. 148-153
Author(s):  
С.Д. Федотов ◽  
А.В. Бабаев ◽  
В.Н. Стаценко ◽  
К.А. Царик ◽  
В.К. Неволин

Представлены результаты изучения морфологии поверхности и структуры слоев AlN, сформированных аммиачной МЛЭ на темплейтах 3C-SiC/Si(111) on-axis- и 4° off-axis-разориентации. Опробован технологический режим низкотемпературной эпитаксии зародышевого слоя AlN на поверхности 3C-SiC(111). Среднеквадратичная шероховатость поверхности (5 х 5 мкм) слоев AlN толщиной 150 ± 50 нм составила 2,5-3,5 нм на темплейтах 3C-SiC/Si(111) on-axis и 3,3-3,5 нм на 4° off-axis. Показано уменьшение шероховатости смачивающего слоя AlN при изменении скорости роста. Получены монокристаллические слои AlN(0002) со значениями FWHM (ω-геометрия) 1,4-1,6°. The paper presents the surface morphology and crystal structure of AlN layers formed by ammonia MBE on 3C-SiC/Si(111) on-axis and 4° off-axis disorientation. It offers the technological approach of low-temperature epitaxy of the AlN nucleation layer on the 3C-SiC (111) surface. Root mean square roughness (5 х 5 |xm) of AlN layers with thickness of 150 ± 50 nm was 2,5-3,5 nm onto on-axis templates and 3.3-3.5 nm onto 4° off-axis. It appears that the RMS roughness of the AlN surface is changing with the growth rate variation. Single-crystal AlN(0002) layers with FWHM values (ω-geometry) of 1.4-1.6° have been obtained.


1995 ◽  
Vol 50 (7) ◽  
pp. 1025-1029 ◽  
Author(s):  
J. Baurmeister ◽  
A. Franken ◽  
W. Preetz

By reaction of [N(C4H9 )4]2 [B6H6] with iodomethyl-trimethylsilane in acetonitrile a solution with trimethylsilylm ethyl-closo-hexaborate(1-)anions, [B6H6 (CH2Si(CH3)3)]-, is formed. The crystal structure of [P(C6H5 )4][B6H6(CH2Si(CH3)3)] has been determined by single crystal X-ray diffraction analysis; monoclinic, space group P21/n with a = 16.140(2), b = 11.646(8), c = 16.731(3) Å, β 109.664(11)°. The 11B NMR spectrum reveals features of a mono hetero substituted octahedral B6 cage. The 13C NMR spectrum exhibits a quartet at +0.18 ppm with 1J(C,H) = 118 Hz for the three methyl groups and a weak multiplet at -0.65 ppm for the methylene bridge due to quadrupole coupling with the boron atoms. In the 29Si NMR spectrum a decet at +2.25 ppm with 2J(C,H ) = 6.9 Hz is observed. The B -C stretching vibration is observed at 1155 cm-1 in the IR and Raman spectrum.


2012 ◽  
Vol 194 ◽  
pp. 76-79 ◽  
Author(s):  
S. Yamashita ◽  
Y. Masubuchi ◽  
Y. Nakazawa ◽  
T. Okayama ◽  
M. Tsuchiya ◽  
...  

2010 ◽  
Vol 66 (6) ◽  
pp. 603-614 ◽  
Author(s):  
Matthias Weil ◽  
Berthold Stöger

The structures of the 3d divalent transition-metal diarsenates M 2As2O7 (M = Mn, Co, Ni, Zn) can be considered as variants of the monoclinic (C2/m) thortveitite [Sc2Si2O7] structure type with a ≃ 6.7, b ≃ 8.5, c ≃ 4.7 Å, α ≃ 90, β ≃ 102, γ ≃ 90° and Z = 2. Co2As2O7 and Ni2As2O7 are dimorphic. Their high-temperature (β) polymorphs adopt the thortveitite aristotype structure in C2/m, whereas their low-temperature (α) polymorphs are hettotypes and crystallize with larger unit cells in the triclinic crystal system in space groups P\bar 1 and P1, respectively. Mn2As2O7 undergoes no phase transition and likewise adopts the thortveitite structure type in C2/m. Zn2As2O7 has an incommensurately modulated crystal structure [C2/m(α,0,γ)0s] with q = [0.3190 (1), 0, 0.3717 (1)] at ambient conditions and transforms reversibly to a commensurately modulated structure with Z = 12 (I2/c) below 273 K. The Zn phase resembles the structures and phase transitions of Cr2P2O7. Besides descriptions of the low-temperature Co2As2O7, Ni2As2O7 and Zn2As2O7 structures as five-, three- and sixfold superstructures of the thortveitite-type basic structure, the superspace approach can also be applied to descriptions of all the commensurate structures. In addition to the ternary M 2As2O7 phases, the quaternary phase (Ni,Co)2As2O7 was prepared and structurally characterized. In contrast to the previously published crystal structure of the mineral petewilliamsite, which has the same idealized formula and has been described as a 15-fold superstructure of the thortveitite-type basic structure in space group C2, synthetic (Ni,Co)2As2O7 can be considered as a solid solution adopting the α-Ni2As2O7 structure type. Differences of the two structure models for (Ni,Co)2As2O7 are discussed.


Sign in / Sign up

Export Citation Format

Share Document