Plane-Wave Density Functional Theoretic Study of Formation of Clay-Polymer Nanocomposite Materials by Self-Catalyzed in Situ Intercalative Polymerization

2001 ◽  
Vol 123 (47) ◽  
pp. 11764-11774 ◽  
Author(s):  
Stephen Stackhouse ◽  
Peter V. Coveney ◽  
Eric Sandré
Author(s):  
Abdallah Kamal ◽  
Mayar Ashmawy ◽  
Shanmugan S ◽  
Almoataz M Algazzar ◽  
Ammar H Elsheikh

Nanotechnology is the key solution for many human problems such as energy conversion, water treatment, and material science. In composite materials, nanoparticles are dispersed in a matrix material such as metals, ceramics, or polymers to enhance their mechanical and thermophysical properties. Polymer nanocomposite materials found their applications in vital fields such as the automotive and aircraft industries. There are many techniques adopted to produce polymer nanocomposites, and they are summarized and discussed according to our best known in this paper. All techniques aim to produce nanocomposite materials with uniform dispersion and without aggregations. Melt-mixing, mixing, in-situ polymerization, electrospinning, and selective laser sintering techniques are the most commonly used techniques to produce polymer nanocomposite. The utilization of water, atomic layer deposition, and plasma-assisted mechanochemistry are found to eradicate the issue of nanoparticles aggregation for melt-mixing technique. Also, sonication with high frequencies plays the same role for mixing techniques. In-situ polymerization provides fabrication of nanocomposites that are thermodynamically stable. Electrospinning represents an effective method which is suitable for producing porous structures. In addition, fabrication of nanocomposites via selective laser sintering has obvious benefits to overcome the problem of aggregation. The working principles of each technique, including the advantages and disadvantages, are discussed.


1997 ◽  
Vol 92 (3) ◽  
pp. 477-487 ◽  
Author(s):  
GERALD LIPPERT ◽  
JuRG HUTTER ◽  
MICHELE PARRINELLO

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


2019 ◽  
Vol 150 (1) ◽  
pp. 014101 ◽  
Author(s):  
Daniel A. Rehn ◽  
Yuan Shen ◽  
Marika E. Buchholz ◽  
Madan Dubey ◽  
Raju Namburu ◽  
...  

Author(s):  
Yang Gao ◽  
Xing Chen ◽  
Shuqi Hu ◽  
Shiguo Zhang

Au-doped SrTiO3 perovskite oxide catalyst (Sr0.995Au0.005TiO3-δ) has been designed and synthesized based on thermodynamic analysis and density functional theory calculations. During reduction, Au nanoparticles with an average diameter of 2...


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


2008 ◽  
Vol 48 (10) ◽  
pp. 2027-2032 ◽  
Author(s):  
Zvonimir Matusinović ◽  
Marko Rogošić ◽  
Juraj Šipušić ◽  
Jelena Macan

Sign in / Sign up

Export Citation Format

Share Document