DNA Electrochemistry through the Base Pairs Not the Sugar−Phosphate Backbone

2005 ◽  
Vol 127 (29) ◽  
pp. 10160-10161 ◽  
Author(s):  
Tao Liu ◽  
Jacqueline K. Barton
F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 52 ◽  
Author(s):  
Alexandra Teresa Pires Carvalho ◽  
Maria Leonor Gouveia ◽  
Charan Raju Kanna ◽  
Sebastian K. T. S. Wärmländer ◽  
Jamie Platts ◽  
...  

We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts.


Tetrahedron ◽  
1995 ◽  
Vol 51 (43) ◽  
pp. 11775-11792 ◽  
Author(s):  
J. Plavec ◽  
C. Thibaudeau ◽  
G. Viswanadham ◽  
C. Sund ◽  
A. Sandström ◽  
...  

2008 ◽  
Vol 112 (27) ◽  
pp. 8188-8197 ◽  
Author(s):  
Daniel Svozil ◽  
Judit E. Šponer ◽  
Ivan Marchan ◽  
Alberto Pérez ◽  
Thomas E. Cheatham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document