scholarly journals A Simple Class of Photorheological Fluids:  Surfactant Solutions with Viscosity Tunable by Light

2007 ◽  
Vol 129 (6) ◽  
pp. 1553-1559 ◽  
Author(s):  
Aimee M. Ketner ◽  
Rakesh Kumar ◽  
Tanner S. Davies ◽  
Patrick W. Elder ◽  
Srinivasa R. Raghavan
2018 ◽  
Author(s):  
Durga Bastakoti ◽  
Hongna Zhang ◽  
Wei-Hua Cai ◽  
Feng-Chen Li

Equipment ◽  
2006 ◽  
Author(s):  
J. Sestak ◽  
V. Mik ◽  
J. Myska ◽  
M. Dostal ◽  
L. Mihalka

2013 ◽  
Vol 50 (5) ◽  
pp. 332-338 ◽  
Author(s):  
Akiomi Ushida ◽  
Tomiichi Hasegawa ◽  
Keiko Amaki ◽  
Takatsune Narumi

Langmuir ◽  
2010 ◽  
Vol 26 (8) ◽  
pp. 5405-5411 ◽  
Author(s):  
Rakesh Kumar ◽  
Aimee M. Ketner ◽  
Srinivasa R. Raghavan

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Matteo Baggioli ◽  
Víctor Cáncer Castillo ◽  
Oriol Pujolàs

Abstract We discuss the nonlinear elastic response in scale invariant solids. Following previous work, we split the analysis into two basic options: according to whether scale invariance (SI) is a manifest or a spontaneously broken symmetry. In the latter case, one can employ effective field theory methods, whereas in the former we use holographic methods. We focus on a simple class of holographic models that exhibit elastic behaviour, and obtain their nonlinear stress-strain curves as well as an estimate of the elasticity bounds — the maximum possible deformation in the elastic (reversible) regime. The bounds differ substantially in the manifest or spontaneously broken SI cases, even when the same stress- strain curve is assumed in both cases. Additionally, the hyper-elastic subset of models (that allow for large deformations) is found to have stress-strain curves akin to natural rubber. The holographic instances in this category, which we dub black rubber, display richer stress- strain curves — with two different power-law regimes at different magnitudes of the strain.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


Sign in / Sign up

Export Citation Format

Share Document