Formation of a Nickel−Methyl Species in Methyl-Coenzyme M Reductase, an Enzyme Catalyzing Methane Formation

2007 ◽  
Vol 129 (36) ◽  
pp. 11028-11029 ◽  
Author(s):  
Na Yang ◽  
Markus Reiher ◽  
Mi Wang ◽  
Jeffrey Harmer ◽  
Evert C. Duin
2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Tristan Wagner ◽  
Carl-Eric Wegner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

ABSTRACT The phylogenetically diverse family of methanogenic archaea universally use methyl coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales and Methanococcales into three distinct types: (i) MCRs from Methanobacteriales, (ii) MCRs from Methanobacteriales and Methanococcales, and (iii) MCRs from Methanococcales. The first and second types contain MCR isoenzymes I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated MCR type I and type II and accordingly; the third one was designated MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus. As predicted, the three MCR types revealed highly similar overall structures and virtually identical active site architectures reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active-site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II, and III share most of the posttranslational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which thus far has been found only in the α-amanitin toxin peptide but not in proteins. IMPORTANCE Methyl coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCRs suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales, and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses revealed substantial differences between the three types only in the peripheral region. The subtle modifications identified and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new posttranslational modification that thus far has been found only in the α-amanitin toxin.


2017 ◽  
Author(s):  
Zhe Lyu ◽  
Chau-wen Chou ◽  
Hao Shi ◽  
Ricky Patel ◽  
Evert C. Duin ◽  
...  

AbstractCatalyzing the key step for anaerobic methane production and oxidation, methyl-coenzyme M reductase or Mcr plays a key role in the global methane cycle. The McrA subunit possesses up to five post-translational modifications (PTM) at its active site. Bioinformatic analyses had previously suggested that methanogenesis marker protein 10 (Mmp10) could play an important role in methanogenesis. To examine its role, MMP1554, the gene encoding Mmp10 inMethanococcus maripaludis, was deleted with a new genetic tool, resulting in the specific loss of the 5-(S)-methylarginine PTM of residue 275 in the McrA subunit and a 40~60 % reduction in the maximal rates of methane formation by whole cells. Methylation was restored by complementations with the wild-type gene. However, the rates of methane formation of the complemented strains were not always restored to the wild type level. This study demonstrates the importance of Mmp10 and the methyl-Arg PTM on Mcr activity.


2021 ◽  
Author(s):  
Jue Wu ◽  
Shi-Lu Chen

An Ni(i) F430-like cofactor derived from vitamin B12 can catalyze methane formation in the active site of methyl-coenzyme M reductase.


2016 ◽  
Vol 128 (36) ◽  
pp. 10788-10791 ◽  
Author(s):  
Tristan Wagner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

2001 ◽  
Vol 309 (1) ◽  
pp. 315-330 ◽  
Author(s):  
Wolfgang Grabarse ◽  
Felix Mahlert ◽  
Evert C. Duin ◽  
Marcel Goubeaud ◽  
Seigo Shima ◽  
...  

2016 ◽  
Vol 55 (36) ◽  
pp. 10630-10633 ◽  
Author(s):  
Tristan Wagner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

2019 ◽  
Vol 202 (3) ◽  
Author(s):  
Zhe Lyu ◽  
Nana Shao ◽  
Chau-Wen Chou ◽  
Hao Shi ◽  
Ricky Patel ◽  
...  

ABSTRACT Catalyzing the key step for anaerobic production and/or oxidation of methane and likely other short-chain alkanes, methyl coenzyme M reductase (Mcr) and its homologs play a key role in the global carbon cycle. The McrA subunit possesses up to five conserved posttranslational modifications (PTMs) at its active site. It was previously suggested that methanogenesis marker protein 10 (Mmp10) could play an important role in methanogenesis. To systematically examine its physiological role, mmpX (locus tag MMP1554), the gene encoding Mmp10 in Methanococcus maripaludis, was deleted with a new genetic tool, resulting in the complete loss of the 5-C-(S)-methylarginine PTM of residue 275 in the McrA subunit. When the ΔmmpX mutant was complemented with the wild-type gene expressed by either a strong or a weak promoter, methylation was fully restored. Compared to the parental strain, maximal rates of methane formation by whole cells were reduced by 40 to 60% in the ΔmmpX mutant. The reduction in activity was fully reversed by the complement with the strong promoter. Site-directed mutagenesis of mmpX resulted in a differential loss of arginine methylation among the mutants in vivo, suggesting that activities of Mmp10 directly modulated methylation. R275 was present in a highly conserved PXRR275(A/S)R(G/A) signature sequence in McrAs. The only other protein in M. maripaludis containing a similar sequence was not methylated, suggesting that Mmp10 is specific for McrA. In conclusion, Mmp10 modulates the methyl-Arg PTM on McrA in a highly specific manner, which has a profound impact on Mcr activity. IMPORTANCE Mcr is the key enzyme in methanogenesis and a promising candidate for bioengineering the conversion of methane to liquid fuel. Our knowledge of Mcr is still limited. In terms of complexity, uniqueness, and environmental importance, Mcr is more comparable to photosynthetic reaction centers than conventional enzymes. PTMs have long been hypothesized to play key roles in modulating Mcr activity. Here, we directly link the mmpX gene to the arginine PTM of Mcr, demonstrate its association with methanogenesis activity, and offer insights into its substrate specificity and putative cofactor binding sites. This is also the first time that a PTM of McrA has been shown to have a substantial impact on both methanogenesis and growth in the absence of additional stressors.


Sign in / Sign up

Export Citation Format

Share Document