A New Type of Imido Group Donor:  Synthesis and Characterization of Sulfonylimino-λ3-bromane that Acts as a Nitrenoid in the Aziridination of Olefins at Room Temperature under Metal-Free Conditions

2007 ◽  
Vol 129 (43) ◽  
pp. 12938-12939 ◽  
Author(s):  
Masahito Ochiai ◽  
Takao Kaneaki ◽  
Norihiro Tada ◽  
Kazunori Miyamoto ◽  
Hiroshi Chuman ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13245-13255
Author(s):  
Mehdi Davoodi ◽  
Fatemeh Davar ◽  
Mohammad R. Rezayat ◽  
Mohammad T. Jafari ◽  
Mehdi Bazarganipour ◽  
...  

New nanocomposite of zeolitic imidazolate framework-67@magnesium aluminate spinel (ZIF-67@MgAl2O4) has been fabricated by a simple method at room temperature with different weight ratios.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Evelyn Carolina Martínez Ceballos ◽  
Ricardo Vera Graziano ◽  
Gonzalo Martínez Barrera ◽  
Oscar Olea Mejía

Poly(dichlorophosphazene) was prepared by melt ring-opening polymerization of the hexachlorocyclotriphosphazene. Poly[bis(2-hydroxyethyl-methacrylate)-phosphazene] and poly[(2-hydroxyethyl-methacrylate)-graft-poly(lactic-acid)-phosphazene] were obtained by nucleophilic condensation reactions at different concentrations of the substituents. The properties of the synthesized copolymers were assessed by FTIR,1H-NMR and31P-NMR, thermal analysis (DSC-TGA), and electron microscopy (SEM). The copolymers have a block structure and show twoTg's below room temperature. They are stable up to a temperature of 100°C. The type of the substituents attached to the PZ backbone determines the morphology of the polymers.


2012 ◽  
Vol 262 ◽  
pp. 405-409
Author(s):  
Yang Liu ◽  
Shan Shan Li ◽  
Xin Yan Yang ◽  
Chong Xing Huang

A new-type foam composites were fabricated by baking method from a mixture of cassava starch. A central composite design was constructed using the software Statistics Analysis System 9.0 to evaluate the static compression stress of foamed material. The optimum dosages of adhesive, foaming agent, catalyst were 2.0g, 6.0g, 2.4g, respectively; reaction temperature 65°C; reaction time 16 hour.


2001 ◽  
pp. 285-286 ◽  
Author(s):  
Yasar Gök ◽  
Halit Kantekin ◽  
Ahmet Bilgin ◽  
Durali Mendil ◽  
Ismail Degirmencioglu

2020 ◽  
Author(s):  
Joel D. Smith ◽  
George Durrant ◽  
Daniel Ess ◽  
Warren Piers

<div>The synthesis and characterization of an iridium polyhydride complex (Ir-H4)</div><div>supported by an electron-rich PCP framework is described. This complex readily loses molecular</div><div>hydrogen allowing for rapid room temperature hydrogen isotope exchange (HIE) at the hydridic</div><div>positions and the α-C-H site of the ligand with deuterated solvents such as benzene-d6, toluene-d8</div><div>and THF-d8. The removal of 1-2 equivalents of molecular H2 forms unsaturated iridium carbene</div><div>trihydride (Ir-H3) or monohydride (Ir-H) compounds that are able to create further unsaturation</div><div>by reversibly transferring a hydride to the ligand carbene carbon. These species are highly active</div><div>hydrogen isotope exchange (HIE) catalysts using C6D6 or D2O as deuterium sources for the</div><div>deuteration of a variety of substrates. By modifying conditions to influence the Ir-Hn speciation,</div><div>deuteration levels can range from near exhaustive to selective only for sterically accessible sites.</div><div>Preparative level deuterations of select substrates were performed allowing for procurement of</div><div>>95% deuterated compounds in excellent isolated yields; the catalyst can be regenerated by</div><div>treatment of residues with H2 and is still active for further reactions.</div>


Sign in / Sign up

Export Citation Format

Share Document