A Liquid Junction Photoelectrochemical Solar Cell Based on p-Type MeNH3PbI3 Perovskite with 1.05 V Open-Circuit Photovoltage

2015 ◽  
Vol 137 (46) ◽  
pp. 14758-14764 ◽  
Author(s):  
Hsien-Yi Hsu ◽  
Li Ji ◽  
Hyun S. Ahn ◽  
Ji Zhao ◽  
Edward T. Yu ◽  
...  
2006 ◽  
Vol 910 ◽  
Author(s):  
Qi Wang ◽  
Matt P. Page ◽  
Eugene Iwancizko ◽  
Yueqin Xu ◽  
Yanfa Yan ◽  
...  

AbstractWe have achieved an independently-confirmed 17.8% conversion efficiency in a 1-cm2, p-type, float-zone silicon (FZ-Si) based heterojunction solar cell. Both the front emitter and back contact are hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). This is the highest reported efficiency for a HWCVD silicon heterojunction (SHJ) solar cell. Two main improvements lead to our most recent increases in efficiency: 1) the use of textured Si wafers, and 2) the application of a-Si:H heterojunctions on both sides of the cell. Despite the use of textured c-Si to increase the short-circuit current, we were able to maintain the same 0.65 V open-circuit voltage as on flat c-Si. This is achieved by coating a-Si:H conformally on the c-Si surfaces, including covering the tips of the anisotropically-etched pyramids. A brief atomic H treatment before emitter deposition is not necessary on the textured wafers, though it was helpful in the flat wafers. It is essential to high efficiency SHJ solar cells that the emitter grows abruptly as amorphous silicon, instead of as microcrystalline or epitaxial Si. The contact on each side of the cell comprises a thin (< 5 nm) low substrate temperature (~100°C) intrinsic a-Si:H layer, followed by a doped layer. Our intrinsic layers are deposited at 0.3-1.2 nm/s. The doped emitter and back-contact layers were deposited at a higher temperature (>200°C) and grown from PH3/SiH4/H2 and B2H6/SiH4/H2 doping gas mixtures, respectively. This combination of low (intrinsic) and high (doped layer) growth temperatures was optimized by lifetime and surface recombination velocity measurements. Our rapid efficiency advance suggests that HWCVD may have advantages over plasma-enhanced (PE) CVD in fabrication of high-efficiency heterojunction c-Si cells; there is no need for process optimization to avoid plasma damage to the delicate, high-quality, Si wafers.


2009 ◽  
Vol 48 (24) ◽  
pp. 4402-4405 ◽  
Author(s):  
Elizabeth A. Gibson ◽  
Amanda L. Smeigh ◽  
Loïc Le Pleux ◽  
Jérôme Fortage ◽  
Gerrit Boschloo ◽  
...  

2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3388 ◽  
Author(s):  
Guang Wu ◽  
Yuan Liu ◽  
Mengxue Liu ◽  
Yi Zhang ◽  
Peng Zhu ◽  
...  

Firing-through paste used for rear-side metallization of p-type monocrystalline silicon passivated emitter and rear contact (PERC) solar cells was developed. The rear-side passivation Al2O3 layer and the SiNx layer can be effectively etched by the firing-through paste. Ohmic contact with a contact resistivity between 1 to 10 mΩ·cm2 was successfully fabricated. Aggressive reactive firing-through paste would introduce non-uniform etching and high-density recombination centers at the Si/paste interface. Good balance between low resistive contact formation and relatively high open-circuit voltage can be achieved by adjusting glass frit and metal powder content in the paste. Patterned dot back contacts formed by firing-through paste can further decrease recombination density at the Si/paste interface. A P-type solar cell with an area of 7.8 × 7.8 cm2 with a Voc of 653.4 mV and an efficiency of 19.61% was fabricated.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Xiaodan Zhang ◽  
Guanghong Wang ◽  
Xinxia Zheng ◽  
Shengzhi Xu ◽  
Changchun Wei ◽  
...  

ABSTRACTIn this article, we present a study of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) films by very high frequency-plasma enhanced chemical vapor deposition (VHF-PECVD) using high deposition pressure. Electrical, structural and optical properties of the films were investigated. Dark conductivity as high as 2.75S/cm of p-type nc-Si: H prepared at 2.5Torr pressure has been achieved at a deposition rate of 1.75Å/s for 25nm thin film. By controlling boron and phosphorus contamination, single junction nc-Si: H solar cells incorporated p-layers prepared under high pressure and low pressure, respectively, were deposited. It has been proven that nanocrystalline silicon solar cells with incorporation of p layer prepared at high pressure has resulted in enhanced open circuit voltage, short circuit current density and subsequently high conversion efficiency. Through the optimization of the bottom solar cell and application of ZnO/Al back reflector, 10.59% initial conversion efficiency of micromorph tandem solar cell (1.027cm2) with an open circuit voltage of 1.3864V, has been fabricated, where the bottom solar cell using a high pressure p layer was deposited in a single chamber.


2011 ◽  
Vol 399-401 ◽  
pp. 1477-1480
Author(s):  
Yan Li Xu ◽  
Jin Hua Li

n-ZnO thin films doped In with 2 atm.% were deposited on p-type silicon wafer with textured surface by Ion Beam Enhanced Deposition method, after annealing and prepared front and back electrodes, the n-ZnO/p-Si heterojunction samples were fabricated. The photoelectric property of the sample were measured and compared with silicon solar cell. The result indicated the saturated photocurrent of n-ZnO/p-Si heterojunction was 20% greater than one of the Si solar cell. It means the ZnO/Si heterojunction has a higher ability of produce photoelectron then one of silicon solarcell. The result of the photovoltaic test of n-ZnO/p-Si heterojunction show The open circuit voltage and short-circuit current of the n-ZnO/p-Si heterojunction was 400mV and 5.5mA/cm2 respectively. It was much smaller than the one of silicon solar cells. The reason was discussed


Sign in / Sign up

Export Citation Format

Share Document