selenium nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 4)

ADMET & DMPK ◽  
2021 ◽  
Author(s):  
Sergey Staroverov ◽  
Sergey Kozlov ◽  
Alexander Fomin ◽  
Konstantin Gabalov ◽  
Vitaliy Khanadeev ◽  
...  

Silymarin (Sil) was conjugated to selenium nanoparticles (SeNPs) to increase Sil bioavailability. The conjugates were monodisperse; the average diameter of the native SeNPs was ~ 20-50 ± 1.5 nm, whereas that of the conjugates was 30-50 ± 0.5 nm. The use of SeNPs to increase the bioavailability of Syl was examined with the MH-22a, EPNT-5, HeLa, Hep-2, and SPEV-2 cell lines. The EPNT-5 (glioblastoma) cells were the most sensitive to the conjugates compared to the conjugate-free control. The conjugates increased the activity of cellular dehydrogenases and promoted the penetration of Sil into the intracellular space. Possibly, SeNPs play the main part in Sil penetration of cells and Sil penetration is not associated with phagocytosis. Thus, SeNPs are promising for use as a Sil carrier and as protective antigens.


2021 ◽  
pp. 1-9
Author(s):  
Roya Saddat Ghaderi ◽  
Fatemeh Adibian ◽  
Zahra Sabouri ◽  
Javid Davoodi ◽  
Monireh Kazemi ◽  
...  

Author(s):  
B. Madhumitha ◽  
Preetha Santhakumar ◽  
M. Jeevitha ◽  
S. Rajeshkumar

Capparis decidua is used in the traditional system of medicine used due to its medicinal properties. Selenium nanoparticle was synthesized in a simple and rapid way by green synthesis method. Selenium nanoparticle was synthesized using aqueous extract of Capparis decidua fruit. The aim of this present study is to synthesize and to analyse the characterization of selenium nanoparticle synthesized using Capparis decidua. Characterization of selenium nanoparticle was done using ultra-visible spectroscopy and Transmission electron microscope [TEM]. Initially, the wavelength obtained for synthesized selenium nanoparticles ranged from 300nm to 600nm. Then TEM was carried out to find the size and shape of the nanoparticle. The selenium nanoparticle was spherical in shape with size of 320nm. The present study concluded that the selenium nanoparticle prepared using Capparis decidua was ecofriendly and may serve and benefit the society because of its rich medicinal property with less side effects if further research is carried out.


Sign in / Sign up

Export Citation Format

Share Document