Frequency of the High-Molecular-Weight Glutenin Allele in Asian Hexaploid Wheat (Triticum aestivumL.) and the Transmission Route through Which the Wheat May Have Reached Japan, the Most Geographically Remote Region of Wheat Production in the World

2002 ◽  
Vol 50 (23) ◽  
pp. 6891-6894 ◽  
Author(s):  
Hiro Nakamura
Genetics ◽  
2006 ◽  
Vol 174 (3) ◽  
pp. 1493-1504 ◽  
Author(s):  
Yong Qiang Gu ◽  
Jérôme Salse ◽  
Devin Coleman-Derr ◽  
Adeline Dupin ◽  
Curt Crossman ◽  
...  

2000 ◽  
Vol 51 (3) ◽  
pp. 371 ◽  
Author(s):  
H. Nakamura

Variation in the electrophoretic banding patterns of high molecular weight (HMW) glutenin subunits of 274 hexaploid wheat (Triticum aestivum) varieties from China was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Twenty-seven different major glutenin HMW subunits were identified. Each variety contained 3–5 subunits and 29 different glutenin subunit patterns were segregated. Seventeen alleles were identified based on comparison of subunit mobilities with those previously found for hexaploid wheat. Chinese hexaploid wheats exhibited particular allelic variation in glutenin HMW subunit composition and this variation differed from that found in wheats from Japanese and other countries. Average Glu-1 quality scores of 274 Chinese wheat varieties in the present study have been shown to be higher than that of Japanese wheats. Considerable genetic variation in the HMW glutenin subunit compositions of the Chinese wheats was observed in the present study and previously. Alleles from Chinese hexaploid wheat varieties have not been extensively introduced into Japan and other countries. The present data may indicate possible applications of Chinese germplasm in wheat breeding programs. To improve the wheat quality, genetic variation should be attempted through the introduction of genes of Chinese varieties into varieties in Japan and other countries.


2000 ◽  
Vol 51 (6) ◽  
pp. 673 ◽  
Author(s):  
H. Nakamura

The endosperm storage proteins of 174 Japanese wheat (Triticum aestivum) landraces were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine their high-molecular-weight (HMW) glutenin subunit composition. These are alleles for complex gene loci, Glu-A1, Glu-B1, and Glu-D1, that are present in Japanese hexaploid wheat landraces. These were identified by comparison with the subunit mobility previously found in hexaploid wheat. Twenty-four different, major glutenin HMW subunits were identified. Each landrace contained 3–5 subunits, and 17 different glutenin subunit patterns were observed for 13 alleles in Japanese landraces. Japanese landraces showed specific allelic variation in glutenin HMW subunits, different from those in non-Japanese hexaploid wheats.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 157-168 ◽  
Author(s):  
D. Mihálik ◽  
E. Gregová ◽  
P. Galuszka ◽  
L. Ohnoutková ◽  
T. Klempová ◽  
...  

A novel high-molecular-weight glutenin subunit encoded by the Glu-1D locus was identified in hexaploid wheat (Triticum aestivum L.) cultivar Noe and was designated as 1Dy12.3. This subunit differed in SDS-PAGE mobility from the well-known 1Dy10 and 1Dy12 subunits that are also encoded by this locus. An analysis of the gene sequences confirmed the uniqueness of 1Dy12.3 and revealed that it is most closely related to the 1Dy12 subunit. The size of the deduced protein was calculated to be 67 884 Da, which is different from the 1Dy10 and 1Dy12 subunits (67 475 Da and 68 713 Da, respectively). The 1Dy12.3 protein consists of 652 residues, with a highly conserved signal sequence and N- and C-terminal domains, although the central repetitive domain comprising motifs of hexapeptide (PGQGQQ) and nonapeptide (GYYPTSLQQ) repeats was less conserved. The 1Dy12.3 subunit demonstrates fewer QHPEQG hexapeptide motifs and exhibits an increased number of methionine residues in comparison to the other characterised high-molecular-weight glutenin subunits. The 1Dy12.3 subunit was cloned and expressed in Escherichia coli and was detected with a prolamin-specific antibody. The size of the detected immunocomplex corresponded to the native 1Dy12.3 protein isolated from grains. The existence and characterisation of this novel high-molecular-weight glutenin subunit increases the diversity of the glutenins encoded by the Glu-1D locus.


2006 ◽  
Vol 43 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Z.S. Lei ◽  
K.R. Gale ◽  
Z.H. He ◽  
C. Gianibelli ◽  
O. Larroque ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document