Determination of Thermally Induced trans-Fatty Acids in Soybean Oil by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Gas Chromatography Analysis

2012 ◽  
Vol 60 (42) ◽  
pp. 10709-10713 ◽  
Author(s):  
An Li ◽  
Yiming Ha ◽  
Feng Wang ◽  
Weiming Li ◽  
Qingpeng Li
2005 ◽  
Vol 59 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Angela Carden ◽  
Michael G. Yost ◽  
Richard A. Fenske

Dermal absorption of pesticides is a primary exposure route for agricultural workers, but is not well characterized. Current measurement techniques are either invasive, such as tape-stripping, or require extensive sample preparation or analysis time, such as urinary metabolite monitoring or wipe sampling followed by gas chromatography analysis. We present the application of a noninvasive, spectroscopic approach for the measurement of pesticide absorption into skin. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to monitor directly the absorption of two pesticides—captan and azinphos-methyl—in ten volunteers over 20 min under occlusive conditions. We found substantial variability in absorption across subjects. Our results were comparable to those measured by the more traditional method of wipe-sampling followed by extraction and gas chromatography analysis. Multivariate data analysis, in the form of multivariate curve resolution (MCR), is a novel addition to this type of experiment, yielding time-resolved information unachievable by standard methods. These data are potentially more informative than the monitoring of blood or urinary metabolites because they can be acquired in essentially real-time, allowing observations of pesticide absorption on a rapid timescale rather than over hours or days.


2004 ◽  
Vol 31 (2) ◽  
pp. 86-91 ◽  
Author(s):  
D. T. Gooden ◽  
H. D. Skipper ◽  
J. H. Kim ◽  
K. Xiong

Abstract Rhizobacteria play an important role in sustainable agriculture via plant growth and biological control of pests in a number of ecosystems. Understanding the interactions of crop rotation and rhizobacteria on peanut production is a critical research need. Development of a database on the rhizobacteria obtained from continuous and rotational fields of peanut was initiated in 1997 and terminated in 2000. Peanut was planted in monoculture for 4 yr. In rotational plots, peanut, cotton, corn, and peanut were planted in sequence. Rhizobacteria were isolated from the roots of crop plants grown in a Norfolk soil near Florence, SC. These isolates were identified by composition of fatty acids from gas chromatography analysis (GC/FAME). Arthrobacter and Bacillus were the major genera from non-rhizosphere soils. At initiation of this study in July 1997, the plots selected for continuous peanut had more diversity in rhizobacteria than those plots selected for rotation. In July 2000, rhizobacteria diversity was greater from peanut roots in the rotation cropping system than continuous peanut. Even though rhizobacteria diversity was greater in the rotation system, higher peanut yields were recorded in the continuous peanut system in 2000. Burkholderia spp. were always isolated from the peanut and other crop rhizospheres at each sampling date.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 231 ◽  
Author(s):  
Nihal Yaman ◽  
Serap Durakli Velioglu

Pekmez, a traditional Turkish food generally produced by concentration of fruit juices, is subjected to fraudulent activities like many other foodstuffs. This study reports the use of Fourier transform infrared spectroscopy (FTIR) in combination with chemometric methods for the detection of fraudulent addition of glucose syrup to traditional grape, carob and mulberry pekmez. FTIR spectra of samples were taken in mid-infrared (MIR) range of 400–4000 cm−1 using attenuated total reflectance (ATR) sample accessory. Partial least squares-discriminant analysis (PLS-DA) and PLS chemometric methods were built for qualitative and quantitative analysis of pekmez samples, respectively. PLS-DA models were successfully used for the discrimination of pure pekmez samples and the adulterated pekmez samples with glucose syrup. Sensitivity and specificity of 100%, and model efficiency of 100% were obtained in PLS-DA models for all pekmez groups. Detection of the adulteration ratio of pekmez samples was also accomplished using ATR-FTIR spectroscopy in combination with PLS. As a result, it was shown that ATR-FTIR spectroscopy along with chemometric methods had a great potential for determination of pekmez adulteration with glucose syrup.


Sign in / Sign up

Export Citation Format

Share Document