Characterization and Bioavailability of Tea Polyphenol Nanoliposome Prepared by Combining an Ethanol Injection Method with Dynamic High-Pressure Microfluidization

2014 ◽  
Vol 62 (4) ◽  
pp. 934-941 ◽  
Author(s):  
Li-qiang Zou ◽  
Wei Liu ◽  
Wei-lin Liu ◽  
Rui-hong Liang ◽  
Ti Li ◽  
...  
2015 ◽  
Vol 78 (1) ◽  
pp. 22-30 ◽  
Author(s):  
SHENGFENG PENG ◽  
LIQIANG ZOU ◽  
WEI LIU ◽  
LU GAN ◽  
WEILIN LIU ◽  
...  

Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.


2019 ◽  
Vol 18 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Sayani Bhattacharyya ◽  
Bharani S Sogali

In the present study custom screening design was employed to observe the effect of four critical process parameters on particle size and polydispersity index of the liposomal formulation made by ethanol injection method. The four process parameters selected were lipid ratio, rate of injection, phase volume ratio and rotational speed of magnetic stirring. Eight different liposomal formulations were prepared using the design. The formulations were subjected to particle size analysis. The analysis was done at a significance level p<0.05 and found that the process parameters had significant effect on the particle size and polydispersity index of the formulations. The design was optimized for the individual responses with an overall desirability of more than 50%. Three batches of liposomes were formulated at optimized process parameters which matched the target as predicted by the design. Therefore, it can be concluded that the design was effective in production of nano sized stable monodisperse liposomes by ethanol injection method. Dhaka Univ. J. Pharm. Sci. 18(1): 103-111, 2019 (June)


2020 ◽  
Vol 100 ◽  
pp. 223-234 ◽  
Author(s):  
Xiaojuan Guo ◽  
Mingshun Chen ◽  
Yuting Li ◽  
Taotao Dai ◽  
Xixiang Shuai ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1410 ◽  
Author(s):  
Cheng-Mei Liu ◽  
Lu Liang ◽  
Xi-Xiang Shuai ◽  
Rui-Hong Liang ◽  
Jun Chen

We previously reported that dynamic high-pressure microfluidization (DHPM) can degrade pectin in aqueous solution. In this study, we further investigated the effect of DHPM on pectin in water-ethanol systems. In the absence of DHPM treatment, it was found that pectin exhibited increased average particle size and unchanged average molecular weight, but a decline in reducing-sugar-ends content with the increase of ethanol concentrations (0–10% v/v). These results indicated that the addition of ethanol induced aggregation of pectin. During DHPM treatment, pectin underwent disaggregation and degradation under all measured ethanol concentrations. Disaggregation was enhanced but degradation was weakened with the increase of ethanol concentration. FT-IR and UV spectra indicated that demethylation but no β-elimination occurred in the water-ethanol system during DHPM. Finally, the mechanism of DHPM-induced disaggregation and degradation of pectin under a water-ethanol system was updated. This work may help us to find a suitable condition for reducing the degradation of pectin during the process of homogenization.


2009 ◽  
Vol 20 (3) ◽  
pp. 228-243 ◽  
Author(s):  
Chiraz Jaafar-Maalej ◽  
Roudayna Diab ◽  
Véronique Andrieu ◽  
Abdelhamid Elaissari ◽  
Hatem Fessi

Sign in / Sign up

Export Citation Format

Share Document