dynamic high pressure
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 32)

H-INDEX

27
(FIVE YEARS 4)

LWT ◽  
2021 ◽  
pp. 112601
Author(s):  
Ricardo Henrique Belmiro ◽  
Ludmilla de Carvalho Oliveira ◽  
Alline Artigiani Lima Tribst ◽  
Marcelo Cristianini

2021 ◽  
Vol 22 (18) ◽  
pp. 9896
Author(s):  
Eugenia Romano ◽  
Paolo Antonio Netti ◽  
Enza Torino

In recent decades, endogenous nanocarrier-exosomes have received considerable scientific interest as drug delivery systems. The unique proteo-lipid architecture allows the crossing of various natural barriers and protects exosomes cargo from degradation in the bloodstream. However, the presence of this bilayer membrane as well as their endogenous content make loading of exogenous molecules challenging. In the present work, we will investigate how to promote the manipulation of vesicles curvature by a high-pressure microfluidic system as a ground-breaking method for exosomes encapsulation. Exosomes isolated from Uppsala 87 Malignant Glioma (U87-MG) cell culture media were characterized before and after the treatment with high-pressure homogenization. Once their structural and biological stability were validated, we applied this novel method for the encapsulation in the lipidic exosomal bilayer of the chemotherapeutic Irinotecan HCl Trihydrate-CPT 11. Finally, we performed in vitro preliminary test to validate the nanobiointeraction of exosomes, uptake mechanisms, and cytotoxic effect in cell culture model.


2021 ◽  
Vol 39 (No. 3) ◽  
pp. 217-225
Author(s):  
Mengpei Liu ◽  
Rong Wang ◽  
Jia Li ◽  
Lihua Zhang ◽  
Jiajia Zhang ◽  
...  

Dynamic high pressure microfluidization (DHPM) is considered an emerging and promising technique for the continuous production of fluid foods. This study measured the effect of DHPM on yam juice. After DHPM processing, the content of total soluble solids (TSS), turbidity, flavonoid and non-enzymatic browning was significantly decreased, with the biggest drops being 35.5, 86.2, 20.7, and 66.7%, respectively. Moreover, the average particle size was decreased from 1 944 nm to 358 nm, which showed a strong positive correlation with turbidity. The reduction coefficients and electric conductivity of Escherichia coli, Saccharomyces cerevisiae and Lactobacillus plantarum were increased significantly after DHPM processing. Combined with morphological analysis, DHPM processing had good bactericidal effects on E. coli and S. cerevisiae. These results provided reference values for the application of DHPM technology in the development of yam juice.


Sign in / Sign up

Export Citation Format

Share Document