Optimization of Subcritical Water Extraction of Flavanols from Green Tea Leaves

2014 ◽  
Vol 62 (28) ◽  
pp. 6828-6833 ◽  
Author(s):  
Min-Jung Ko ◽  
Chan-Ick Cheigh ◽  
Myong-Soo Chung
Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3092
Author(s):  
Hee-Jeong Hwang ◽  
Yu-Gyeong Kim ◽  
Myong-Soo Chung

The aim of this study was to find the optimum condition of pulsed electric field (PEF) and intense pulsed light (IPL) for the enhancement of subcritical water extraction (SWE), which is an eco-friendly extraction method, for extracting tea catechins from green tea leaves (Camellia sinensis). The leaves were treated with PEF under conditions of electric field strength (1, 2 and 3 kV/cm) during 60 s. Moreover, IPL was applied at various voltages (800, 1000, and 1200 V) for 60 s. The SWE was performed for 5 min at varying temperatures (110, 130, 150, 170, and 190 °C). The maximum yield of total catechin was 44.35 ± 2.00 mg/g dry green tea leaves at PEF treatment conditions of 2 kV/cm during 60 s, as well as the SWE temperature of 130 °C. In the case of IPL treatment, the largest amount of total catechin was 48.06 ± 5.03 mg/g dry green tea leaves at 800 V during 60 s when the extraction temperature was 130 °C. The total catechin content was increased by 15.43% for PEF and 25.09% for IPL compared to the value of untreated leaves. This study verified that PEF and IPL had a positive effect on the enhancement of tea catechins extraction from green tea leaves using SWE.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1028
Author(s):  
Nguyen Tuan Hiep ◽  
Hoang Thanh Duong ◽  
Dang Tuan Anh ◽  
Nguyen Hoai Nguyen ◽  
Do Quang Thai ◽  
...  

Background: Camellia sinensis is a plant whose leaves and buds are used to produce tea. With many medicinal activities already found, green tea has been consumed widely in the world. Methods: The subcritical water extraction (SWE) of epigallocatechin gallate (EGCG) from green tea leaves and the effect of the different extraction conditions are investigated by response surface methodology (RSM). Furthermore, the model of the extraction processes is reviewed for application at the industrial scale. Results: Based on the RSM data, the maximum yield of extraction is determined via optimizing different parameters of the extraction processes. Optimal conditions are as follows: extraction time of 6 min, extraction temperature at 120 °C, and a sample/solvent ratio of 1:40 g/mL. Under such conditions, the best yield of EGCG is 4.665%. Moreover, the model of the extraction processes, which can be utilized for industry scale purpose, indicates a good correlation with the experimental data. Conclusions: Overall, SWE is competent and environmental-friendly, and it is also a highly selective and fast method. SWE is a promising method to take the place of organic solvents used in the extraction of weak polar and even non-polar natural compounds. Further studies on the scale-up of the extraction processes are ongoing.


2007 ◽  
Vol 12 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Dae-Jin Kim ◽  
Dae-Soo Chung ◽  
Sung-Chul C. Bai ◽  
Hyeong-Soo Kim ◽  
Yu-Bang Lee

Author(s):  
Ali Forouzanfar ◽  
Hamideh Sadat Mohammadipour ◽  
Fatemeh Forouzanfar

: Periodontal diseases are highly prevalent and can affect high percentage of the world population. Oxidative stress and inflammation plays an important role in the pathogenesis of periodontal diseases. Nowadays, more attention has been focused on the herbal remedies in the field of drug discovery. Green tea is an important source of polyphenol antioxidants, it has long been used as a beverage worldwide. The most interesting polyphenol components of green tea leaves that are related with health benefits are the catechins. Taken together this review suggested that green tea with its wide spectrum of activities could be a healthy alternative for controlling the damaging reactions seen in periodontal diseases.


2021 ◽  
Vol 1795 (1) ◽  
pp. 012070
Author(s):  
Hamsa A. Abdulmageed ◽  
Abdulhadi. K. Judran ◽  
Farah T. M. Noori

Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


2021 ◽  
Author(s):  
Zhu-Lin Luo ◽  
Hongyu Sun ◽  
Xiao-Bo Wu ◽  
Long Cheng ◽  
Jian-Dong Ren

Green tea has been considered as a health-promoting beverage and is widely consumed worldwide. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol derived from green tea leaves with potent antioxidative and chemopreventive...


Sign in / Sign up

Export Citation Format

Share Document