Elucidation of Substituted Ester Group Position in Octenylsuccinic Anhydride Modified Sugary Maize Soluble Starch

2014 ◽  
Vol 62 (48) ◽  
pp. 11696-11705 ◽  
Author(s):  
Fan Ye ◽  
Ming Miao ◽  
Chao Huang ◽  
Keyu Lu ◽  
Bo Jiang ◽  
...  
2009 ◽  
Vol 7 (4) ◽  
pp. 752-759 ◽  
Author(s):  
Corina Flangea ◽  
Alina Serb ◽  
Catalin Schiopu ◽  
Sorin Tudor ◽  
Eugen Sisu ◽  
...  

AbstractSulfation pattern within chondroitin sulfate (CS) glycosaminoglycan (GAG) chains is an important post-translational modification that regulates their interaction with proteins. In this context, development of highly efficient and reproducible analytical methods for the investigation of CS sulfation patterns is of high necessity. In this study we report a novel method for straightforward determination of N-acetylgalactosamine (GalNAc) sulfation sites in chondroitin sulfate disaccharides. Our protocol involves combining fully automated chip-based nanoelectrospray (nanoESI) for analyte infusion and ionization in negative ion mode with multistage (MSn) collision-induced dissociation (CID) high capacity ion trap (HCT) mass spectrometry for generation of sequence ions diagnostic for identification of sulfate ester group position within GalNAc residues. The feasibility of this approach is here demonstrated on chondroitin 6-O-sulfate and chondroitin 4-O-sulfate disaccharides. Fragmentation patterns obtained by MS2 and MS3 sequencing stages provided first mass spectrometric data from which sulfation site(s) within GalNAc monosaccharide ring could be unequivocally deciphered. Hence, the method allowed discriminating 4S/6S sulfation sites solely on the basis of MS and multistage MS evidence.


1979 ◽  
Vol 44 (5) ◽  
pp. 1496-1509 ◽  
Author(s):  
Pavel Kočovský ◽  
Václav Černý

Acid cleavage of the acetoxy epoxide IIIa with aqueous perchloric acid or hydrobromic acid gave two types of products, i.e. the diol Va or the bromohydrin VIa, and the cyclic ether VIII. The latter compound arises by participation of ether oxygen of the ester group. On reaction with perchloric acid the epoxide IVa gave the diol XIIIa as a product of a normal reaction and the isomeric diol Xa as a product arising by intramolecular participation of the carbonyl oxygen of the 19-acetoxy group. Participation of the 19-ester group is confirmed by the formation of the cyclic carbonate XI when the 19-carbonate IVb is treated analogously. On reaction with hydrobromic acid, the epoxide IVa gave solely the bromohydrin XIVa as a product of the normal reaction course. Discussed is the similarity of these reactions with electrophilic additions to the related 19-acetoxy olefins I and II, the mechanism, the difference in behavior of both epoxides III and IV, the dependence of the product ratio on the nucleophility of the attacking species, and the competition between participation of an ambident neighboring group and an external nucleophile attack.


2021 ◽  
Vol 23 (5) ◽  
pp. 1675-1680 ◽  
Author(s):  
Qian-Kun Zhao ◽  
Xiong Wu ◽  
Lin-Ping Li ◽  
Fan Yang ◽  
Jian-Hua Xie ◽  
...  

2021 ◽  
pp. 2100011
Author(s):  
Alexander T. Fritz ◽  
Jaime C. Cazotti ◽  
Omar Garcia‐Valdez ◽  
Niels M. B. Smeets ◽  
Marc A. Dubé ◽  
...  

1994 ◽  
Vol 269 (40) ◽  
pp. 25150-25157
Author(s):  
M.L. Maddelein ◽  
N. Libessart ◽  
F. Bellanger ◽  
B. Delrue ◽  
C. D'Hulst ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1241
Author(s):  
Michael Ioelovich

In this study, physicochemical and chemical methods of cellulose modification were used to increase the hydrophobicity of this natural semicrystalline biopolymer. It has been shown that acid hydrolysis of the initial cellulose increases its crystallinity, which improves hydrophobicity, but only to a small extent. A more significant hydrophobization effect was observed after chemical modification by esterification, when polar hydroxyl groups of cellulose were replaced by non-polar substituents. The esterification process was accompanied by the disruption of the crystalline structure of cellulose and its transformation into the mesomorphous structure of cellulose esters. It was found that the replacement of cellulose hydroxyls with ester groups leads to a significant increase in the hydrophobicity of the resulting polymer. Moreover, the increase of the number of non-polar groups in the ester substituent contributes to rise in hydrophobicity of cellulose derivative. Depending on the type of ester group, the hydrophobicity increased in the following order: acetate < propionate < butyrate. Therefore, tributyrate cellulose (TBC) demonstrated the most hydrophobicity among all studied samples. In addition, the mixed ester, triacetobutyrate cellulose (TAB), also showed a sufficiently high hydrophobicity. The promising performance properties of hydrophobic cellulose esters, TBC and TAB, were also demonstrated.


2005 ◽  
Vol 24 (4) ◽  
pp. 197-208 ◽  
Author(s):  
Yuan-Jun Liu ◽  
Wen Zhai ◽  
Chuan-Lan He ◽  
Jian-Guo Deng ◽  
Ke-Jian Ji ◽  
...  

The aging rules of rigid polyurethane foam (PUR) at indoor storage and different hygrothermal conditions have been studied. Four parameters, which are mass, dimension, compressive strength and compressive modulus were tested. At indoor storage, mass, dimension and compressive strength vary slowly with an increase in aging time, while compressive modulus decreases quickly. PUR is sensitive to relative humidity (RH) verified by accelerated hygrothermal aging, and hydrolysis of ester group is the main reason resulting in the decrease of compressive properties. The filling with fire retardant and glass beads had some effect on hygrothermal aging properties of PUR. The addition of fire retardant increased compressive strength with aging time in the total trend, but it made dimension stability worse. The addition of glass beads slightly improved hygrothermal aging properties.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siwaret Arikit ◽  
Samart Wanchana ◽  
Srisawat Khanthong ◽  
Chatree Saensuk ◽  
Tripop Thianthavon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document