Fluorescently Labeled Analogues of Dofetilide as High-Affinity Fluorescence Polarization Ligands for the Human Ether-a-go-go-Related Gene (hERG) Channel

2007 ◽  
Vol 50 (13) ◽  
pp. 2931-2941 ◽  
Author(s):  
David H. Singleton ◽  
Helen Boyd ◽  
Jill V. Steidl-Nichols ◽  
Matt Deacon ◽  
Marcel J. de Groot ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Li ◽  
Lijuan Chai ◽  
Gaopan Dong ◽  
Xiaomeng Zhang ◽  
Lupei Du

Three environment-sensitive probes were developed for the hERG channel based on the nitrobenzoxadiazole fluorophore herein. After careful evaluation, probes M1 and M3 were found to have a high affinity for imaging the hERG channel in the cell-based experiment. Compared with other fluorescent labeling technologies (such as fluorescent proteins), these probes afford a convenient and economical method to determine hERG channel in vitro and in cellulo. Therefore, these probes are expected to be applicable for usage in physiological and pathological studies of hERG channels and have the potential to establish a screening system for hERG channels.


2020 ◽  
Vol 27 (18) ◽  
pp. 3046-3054
Author(s):  
Xiaomeng Zhang ◽  
Beilei Wang ◽  
Zhenzhen Liu ◽  
Yubin Zhou ◽  
Lupei Du

hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential role in cardiac action potential repolarization, is responsible for inherited and druginduced long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å resolution. This report focuses primarily on summarizing the design rationale and application of several fluorescent probes that target hERG channels, which enables dynamic and real-time monitoring of potassium pore channel affinity to further advance the understanding of the channels.


2016 ◽  
Vol 310 (5) ◽  
pp. C329-C336 ◽  
Author(s):  
N. Wang ◽  
H. S. Kang ◽  
G. Ahmmed ◽  
S. A. Khan ◽  
V. V. Makarenko ◽  
...  

Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K+ current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K+ current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca2+ concentration ([Ca2+]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca2+]i mediates hERG protein degradation by IH.


2013 ◽  
Vol 58 (2) ◽  
pp. 820-827 ◽  
Author(s):  
Natalie G. Sanders ◽  
David J. Meyers ◽  
David J. Sullivan

ABSTRACTQuinine and other cinchona-derived alkaloids, although recently supplanted by the artemisinins (ARTs), continue to be important for treatment of severe malaria. Quinine and quinidine have narrow therapeutic indices, and a safer quinine analog is desirable, particularly with the continued threat of antimalarial drug resistance. Hydroxyethylapoquinine (HEAQ), used at 8 g a day for dosing in humans in the 1930s and halving mortality from bacterial pneumonias, was shown to cure bird malaria in the 1940s and was also reported as treatment for human malaria cases. Here we describe synthesis of HEAQ and its novel stereoisomer hydroxyethylapoquinidine (HEAQD) along with two intermediates, hydroxyethylquinine (HEQ) and hydroxyethylquinidine (HEQD), and demonstrate comparable but elevated antimalarial 50% inhibitory concentrations (IC50) of 100 to 200 nM againstPlasmodium falciparumquinine-sensitive strain 3D7 (IC50, 56 nM). Only HEAQD demonstrated activity against quinine-tolerantP. falciparumstrains Dd2 and INDO with IC50s of 300 to 700 nM. HEQD had activity only against Dd2 with an IC50of 313 nM. In the lethal mouse malaria modelPlasmodium bergheiANKA, only HEQD had activity at 20 mg/kg of body weight comparable to that of the parent quinine or quinidine drugs measured by parasite inhibition and 30-day survival. In addition, HEQ, HEQD, and HEAQ (IC50≥ 90 μM) have little to no human ether-à-go-go-related gene (hERG) channel inhibition expressed in CHO cells compared to HEAQD, quinine, and quinidine (hERG IC50s of 27, 42, and 4 μM, respectively). HEQD more closely resembled quininein vitroandin vivoforPlasmodiuminhibition and demonstrated little hERG channel inhibition, suggesting that further optimization and preclinical studies are warranted for this molecule.


The Analyst ◽  
2015 ◽  
Vol 140 (24) ◽  
pp. 8101-8108 ◽  
Author(s):  
Zhenzhen Liu ◽  
Yubin Zhou ◽  
Lupei Du ◽  
Minyong Li

A novel conformation-mediated intramolecular photoinduced electron transfer fluorogenic system based-on naphthalimide fluorophore was established for hERG potassium channel herein. After careful evaluation, probe N4 and N6 showed good activity and may have a promising application in hERG channel imaging and drug cardiotoxicity evaluation.


2007 ◽  
Vol 106 (5) ◽  
pp. 967-976 ◽  
Author(s):  
Alexander P. Schwoerer ◽  
Carmen Blütner ◽  
Sven Brandt ◽  
Stephan Binder ◽  
Cornelia C. Siebrands ◽  
...  

Background The cardiac safety of droperidol given at antiemetic doses is a matter of debate. Although droperidol potently inhibits human ether-a-go-go-related gene (HERG) channels, the molecular mode of this interaction is unknown. The role of amino acid residues typically mediating high-affinity block of HERG channels is unclear. It is furthermore unresolved whether droperidol at antiemetic concentrations induces action potential prolongation and arrhythmogenic early afterdepolarizations in cardiac myocytes. Methods Molecular mechanisms of HERG current inhibition by droperidol were established using two-electrode voltage clamp recordings of Xenopus laevis oocytes expressing wild-type and mutant channels. The mutants T623A, S624A, V625A, Y652A, and F656A were generated by site-directed mutagenesis. The effect of droperidol on action potentials was investigated in cardiac myocytes isolated from guinea pig hearts using the patch clamp technique. Results Droperidol inhibited currents through HERG wild-type channels with a concentration of half-maximal inhibition of 0.6-0.9 microM. Droperidol shifted the channel activation and the steady state inactivation toward negative potentials while channel deactivation was not affected. Current inhibition increased with membrane potential and with increasing duration of current activation. Inhibition of HERG channels was similarly reduced by all mutations. Droperidol at concentrations between 5 and 100 nM prolonged whereas concentrations greater than 300 nm shortened action potentials. Early afterdepolarizations were not observed. Conclusions Droperidol is a high-affinity blocker of HERG channels. Amino acid residues typically involved in high-affinity block mediate droperidol effects. Patch clamp results and computational modeling allow the hypothesis that interaction with calcium currents may explain why droperidol at antiemetic concentrations prolongs the action potential without inducing early afterdepolarizations.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Qi ◽  
Michelle Oppenheimer ◽  
Pablo Sobrado

Aspergillus fumigatus is an opportunistic human pathogenic fungus responsible for deadly lung infections in immunocompromised individuals. Galactofuranose (Galf) residues are essential components of the cell wall and play an important role in A. fumigatus virulence. The flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose to UDP-galactofuranose, the biosynthetic precursor of Galf. Thus, inhibitors of UGM that block the biosynthesis of Galf can lead to novel chemotherapeutics for treating A. fumigatus-related diseases. Here, we describe the synthesis of fluorescently labeled UDP analogs and the development of a fluorescence polarization (FP) binding assay for A. fumigatus UGM (AfUGM). High-affinity binding to AfUGM was only obtained with the chromophore TAMRA, linked to UDP by either 2 or 6 carbons with Kd values of 2.6 ± 0.2 μM and 3.0 ± 0.7 μM, respectively. These values were ~6 times lower than when UDP was linked to fluorescein. The FP assay was validated against several known ligands and displayed an excellent Z′ factor (0.79 ± 0.02) and good tolerance to dimethyl sulfoxide.


Sign in / Sign up

Export Citation Format

Share Document