scholarly journals Molecular Interaction of Droperidol with Human Ether-a-go-go -related Gene Channels

2007 ◽  
Vol 106 (5) ◽  
pp. 967-976 ◽  
Author(s):  
Alexander P. Schwoerer ◽  
Carmen Blütner ◽  
Sven Brandt ◽  
Stephan Binder ◽  
Cornelia C. Siebrands ◽  
...  

Background The cardiac safety of droperidol given at antiemetic doses is a matter of debate. Although droperidol potently inhibits human ether-a-go-go-related gene (HERG) channels, the molecular mode of this interaction is unknown. The role of amino acid residues typically mediating high-affinity block of HERG channels is unclear. It is furthermore unresolved whether droperidol at antiemetic concentrations induces action potential prolongation and arrhythmogenic early afterdepolarizations in cardiac myocytes. Methods Molecular mechanisms of HERG current inhibition by droperidol were established using two-electrode voltage clamp recordings of Xenopus laevis oocytes expressing wild-type and mutant channels. The mutants T623A, S624A, V625A, Y652A, and F656A were generated by site-directed mutagenesis. The effect of droperidol on action potentials was investigated in cardiac myocytes isolated from guinea pig hearts using the patch clamp technique. Results Droperidol inhibited currents through HERG wild-type channels with a concentration of half-maximal inhibition of 0.6-0.9 microM. Droperidol shifted the channel activation and the steady state inactivation toward negative potentials while channel deactivation was not affected. Current inhibition increased with membrane potential and with increasing duration of current activation. Inhibition of HERG channels was similarly reduced by all mutations. Droperidol at concentrations between 5 and 100 nM prolonged whereas concentrations greater than 300 nm shortened action potentials. Early afterdepolarizations were not observed. Conclusions Droperidol is a high-affinity blocker of HERG channels. Amino acid residues typically involved in high-affinity block mediate droperidol effects. Patch clamp results and computational modeling allow the hypothesis that interaction with calcium currents may explain why droperidol at antiemetic concentrations prolongs the action potential without inducing early afterdepolarizations.

1998 ◽  
Vol 273 (26) ◽  
pp. 15927-15932 ◽  
Author(s):  
Eduardo Sainz ◽  
Mark Akeson ◽  
Samuel A. Mantey ◽  
Robert T. Jensen ◽  
James F. Battey

1991 ◽  
Vol 99 (4) ◽  
pp. 711-719
Author(s):  
K.L. O'Donnell ◽  
A.H. Osmani ◽  
S.A. Osmani ◽  
N.R. Morris

The recessive, temperature-sensitive bimA1 mutation of Aspergillus nidulans blocks nuclei in metaphase at restrictive temperature. To determine whether the bimA product is essential, integrative transformation was used to create a mutation in the bimA gene. The mutation was maintained in a heterokaryon and the phenotype of spores produced by the heterokaryon was analyzed. Molecular disruption of the wild-type bimA gene is recessive in the heterokaryon and causes a metaphase block, demonstrating that bimA is an essential gene for mitosis. bimA was cloned by DNA-mediated complementation of its mutant phenotype at restrictive temperature, and the nucleotide sequence of a full-length cDNA was determined. A single large open reading frame was identified in the cDNA sequence, which predicts a protein containing 806 amino acid residues that is related (30.4% identity) to the Schizosaccharomyces pombe nuc2+ gene product, which also is required for completion of mitosis. The sequence of the bimA gene indicates that it is a member of a family of mostly nuclear proteins that contain a degenerate 34 amino acid repeat, the TPR (tetratricopeptide repeat) gene family.


2005 ◽  
Vol 22 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Todd E. Gillis ◽  
Bo Liang ◽  
Franca Chung ◽  
Glen F. Tibbits

The Ca2+ sensitivity of force generation in trout cardiac myocytes is significantly greater than that from mammalian hearts. One mechanism that we have suggested to be responsible, at least in part, for this high Ca2+ sensitivity is the isoform of cardiac troponin C (cTnC) found in trout hearts (ScTnC), which has greater than twice the Ca2+ affinity of mammalian cTnC (McTnC). Here, through a series of mutations, the residues in ScTnC responsible for its high Ca2+ affinity have been identified as being Asn2, Ile28, Gln29, and Asp30. When these residues in McTnC were mutated to the trout-equivalent amino acid, the Ca2+ affinity of the molecule, determined by monitoring the fluorescence of a Trp inserted for a Phe at residue 27, is comparable to that of ScTnC. To determine how a McTnC mutant containing Asn2, Ile28, Gln29, and Asp30 (NIQD McTnC) affects the Ca2+ sensitivity of force generation, endogenous cTnC in single, chemically skinned rabbit cardiomyocytes was replaced with either wild-type McTnC or NIQD McTnC. Our results demonstrate that the cardiomyocytes containing NIQD McTnC were approximately twice as sensitive to Ca2+, illustrating that a McTnC mutant with similar Ca2+ affinity as ScTnC can be used to sensitize mammalian cardiac myocytes to Ca2+.


2007 ◽  
Vol 106 (3) ◽  
pp. 523-531 ◽  
Author(s):  
Cornelia C. Siebrands ◽  
Patrick Friederich

Background Local anesthetics interact with human ether-a-go-go-related gene (HERG) channels via the aromatic amino acids Y652 and F656 in the S6 region. This study aimed to establish whether the residues T623, S624, and V625 residing deeper within the pore are also involved in HERG channel block by bupivacaine. In addition, the study aimed to further define the role of the aromatic residues Y652 and F656 in bupivacaine inhibition by mutating these residues to threonine. Methods Alanine and threonine mutants were generated by site-directed mutagenesis. Electrophysiologic and pharmacologic properties of wild-type and mutant HERG channels were established using two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing HERG channels. Results Tail currents at -120 mV through HERG wild-type channels were inhibited with an IC50 value of 132 +/- 22 microm (n = 33). Bupivacaine (300 microm) inhibited wild-type tail currents by 62 +/- 12% (n = 7). Inhibition of HERG tail currents by bupivacaine (300 microm) was reduced by all mutations (P < 0.001). The effect was largest for F656A (inhibition 5 +/- 2%, n = 6) in the lower S6 region and for T623A (inhibition 13 +/- 4%, n = 9) near the selectivity filter. Introducing threonine at positions 656 and 652 significantly reduced inhibition by bupivacaine compared with HERG wild type (P < 0.001). Conclusions The authors' results indicate that not only the aromatic residues Y652 and F656 but also residues residing deeper within the pore and close to the selectivity filter of HERG channels are involved in inhibition of HERG channels by the low-affinity blocker bupivacaine.


2017 ◽  
Vol 95 (6) ◽  
pp. 634-643
Author(s):  
Juliano Alves ◽  
Miguel Garay-Malpartida ◽  
João M. Occhiucci ◽  
José E. Belizário

Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD198↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (kcat/KM) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1711-1711
Author(s):  
Rinku Majumder ◽  
Mary Ann Quinn-Allen ◽  
Barry R. Lentz ◽  
William H. Kane

Abstract Tightly associated factors Va and Xa serve as the essential prothrombin-activating complex whose assembly is triggered by occupancy of phosphatidylserine (PS) regulatory sites on both proteins. Factor Va C2 domain contains a binding site for soluble, short chain PS (C6PS) that includes the indole moieties of Trp2063/Trp2064 at the apex of a loop (“spike-1”) (Srivastava A, Quinn-Allen MA, Kim SW, Kane WH, Lentz BR. Biochemistry, 2001, 40(28): 8246–55). Our recent data show that there is a C6PS site in the factor Va2 C1 domain that serves as a regulatory site for assembly and/or activity of the FVa2-FXa complex (Majumder R, Quinn-Allen MA, Kane WH & Lentz BR. Manuscript in Preparation). This C6PS-binding site also involves aromatic and hydrophobic residues (Tyr1956/Tyr1957) located in a homologous loop whose apex is termed “spike 3”. In order to identify the amino acid residues in the C1 domain that contribute to the PS-mediated cofactor activity of factor Va2, charged and hydrophobic residues predicted to be exposed in FVa2-C1 domain were mutated to alanine in clusters of 1–3 mutations per construct. The resultant 20 mutants (R1880A, D1892A, (K1896,E1899)A, (F1900,L1901,Y1903)A, (E1905,R1907)A, Y1917A, (E1923,K1924)A, (K1941,E1942)A, (K1954,H1955)A, (Y1956,L1957)A, Y1956A, L1957A, K1958A, E1964A, K1980A, D1995A, R2019A, (R2023,R2027)A, R2023A, R2027A,) and factor V wild type were expressed in Cos-7 cells followed by activation with thrombin, partial purification and concentration using HiTrap SP HP columns. The specific activities of all factor Va mutants were greater than 70% of wild type, with concentrations in the 1.5-7μM range. Recently it has been shown that two mutants (Y1956, L1957)A and (R2023,R2027)A showed decreased binding to immobilized PS and a selective decrease in prothrombinase activity on membranes containing 5% PS (Saleh M, Peng W, Quinn-Allen MA, Macedo-Ribeiro S, Fuentes-Prior P, Bode W & Kane WH. Thromb. Haemost.2004, 91:16–27). Here we report the rate of prothrombin activation in the presence of 1 nM factor Xa, 5 nM factorVa2 (mutants and wild type) and 400 mM C6PS. Enhancement of cofactor activity (E) of factor Va-C1 wild type and mutants by C6PS was measured using the following equation ( Zhai X, Srivastava A, Drummond DC, Daleke D and Lentz BR. Biochemistry. 2002, 41: 5675–84): \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[E=\ (r_{Xa.Va.PL}/r_{Xa.PL})/(r_{Xa.Va}/r_{Xa})\] \end{document} Here, rXa·Va·PL is the rate of prothrombin activation measured as the initial slope of the rate of change of normalized DAPA fluorescence with time by enzyme in the presence of factor Va and lipid, and other terms are defined analogously. The cofactor activities of (Y1956, L1957) A, Y1956A and L1957A were drastically reduced (values are 1.1, 4.2 and 5.1 respectively) relative to the cofactor activity of the wild type factor Va2 (15). The cofactor activities of (R2023, R2027) A, E1964A and (K1954, H1955) A were also reduced but to a lesser extent (values are 8, 10.6 and 12 respectively). We plan to monitor the binding of these mutants to C6PS and to factor Xa in the presence of C6PS in order to determine the role of these mutations on the assembly and activity of prothrombinase. Supported by grants from the NHLBI (HL43106 to W. Kane and HL 072827 to BRL).


1991 ◽  
Vol 11 (10) ◽  
pp. 4809-4821
Author(s):  
D Poon ◽  
S Schroeder ◽  
C K Wang ◽  
T Yamamoto ◽  
M Horikoshi ◽  
...  

We have examined the structure-function relationships of TFIID through in vivo complementation tests. A yeast strain was constructed which lacked the chromosomal copy of SPT15, the gene encoding TFIID, and was therefore dependent on a functional plasmid-borne wild-type copy of this gene for viability. By using the plasmid shuffle technique, the plasmid-borne wild-type TFIID gene was replaced with a family of plasmids containing a series of systematically mutated TFIID genes. These various forms of TFIID were expressed from three different promoter contexts of different strengths, and the ability of each mutant form of TFIID to complement our chromosomal TFIID null allele was assessed. We found that the first 61 amino acid residues of TFIID are totally dispensable for vegetative cell growth, since yeast strains containing this deleted form of TFIID grow at wild-type rates. Amino-terminally deleted TFIID was further shown to be able to function normally in vivo by virtue of its ability both to promote accurate transcription initiation from a large number of different genes and to interact efficiently with the Gal4 protein to activate transcription of GAL1 with essentially wild-type kinetics. Any deletion removing sequences from within the conserved carboxy-terminal region of S. cerevisiae TFIID was lethal. Further, the exact sequence of the conserved carboxy-terminal portion of the molecule is critical for function, since of several heterologous TFIID homologs tested, only the highly related Schizosaccharomyces pombe gene could complement our S. cerevisiae TFIID null mutant. Taken together, these data indicate that all important functional domains of TFIID appear to lie in its carboxy-terminal 179 amino acid residues. The significance of these findings regarding TFIID function are discussed.


2004 ◽  
Vol 279 (50) ◽  
pp. 52781-52788 ◽  
Author(s):  
Akira Morimoto ◽  
Kazuhiro Irie ◽  
Kazuma Murakami ◽  
Yuichi Masuda ◽  
Hajime Ohigashi ◽  
...  

Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer β-amyloid peptides (Aβ40 and Aβ42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Aβ peptides are rich in intermolecular β-sheet, the precise secondary structure of Aβ in the aggregates remains unclear. To identify the amino acid residues involved in the β-sheet formation, 34 proline-substituted mutants of Aβ42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in β-sheet, whereas they are easily accommodated in β-turn as a Pro-Xcorner. Among the mutants at positions 15-32, only E22P-Aβ42 extensively aggregated with stronger neurotoxicity than wild-type Aβ42, suggesting that the residues at positions 15-21 and 24-32 are involved in the β-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Aβ42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Aβ42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Aβ42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Aβ42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the β-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Aβ42 and Aβ40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Aβ42. The identification of the β-sheet region of Aβ42 is a basis for designing new aggregation inhibitors of Aβ peptides.


1996 ◽  
Vol 318 (3) ◽  
pp. 1041-1049 ◽  
Author(s):  
Himakshi PATEL ◽  
Jo BRAMALL ◽  
Helen WATERS ◽  
Maria C. DE BEER ◽  
Patricia WOO

Site-directed mutagenesis of the acute-phase human serum amyloid A (SAA1α) protein was used to evaluate the importance of the N-terminal amino acid residues, namely RSFFSFLGEAF. The full-length cDNA clone of SAA1α (pA1.mod.) was used to create two mutations, namely Gly-8 to Asp-8 and an 11 amino acid truncation between Arg-1 and Phe-11 respectively. Wild-type and mutant cDNAs were expressed in Chinese hamster ovary (CHO) cells under the control of the human cytomegalovirus promoter, which resulted in the secretion of the processed proteins into the culture media. Wild-type recombinant human SAA (rSAA) protein was shown to have pI values of 6.0 and 6.4, similar to the human SAA isoform SAA1α and SAA1α desArg found in acute-phase plasma. N-terminal sequencing of 56 residues confirmed its identity with human SAA1α. The total yield of wild-type rSAA measured by ELISA was between 3.5 and 30 mg/l. The two mutations resulted in reduced expression levels of the mutant SAA proteins (3–10 mg/l). Further measurements of rSAA concentration in lipid fractions of culture medium collected at a density of 1.21 g/ml (high-density lipoprotein; HDL) and 1.063–1.18 g/ml (very-low-density lipoprotein/low-density lipoprotein; VLDL/LDL) showed that 76% of the wild-type protein was found in the HDL fraction and the remaining 24% in the infranatant non-lipid fraction. In contrast the relative concentration of mutant rSAA in HDL and infranatant fractions was reversed. This is consistent with the previously proposed involvement of the 11 amino acid peptide in anchoring SAA protein on to HDL3 [Turnell, Sarra, Glover, Baum, Caspi, Baltz and Pepys (1986) Mol. Biol. Med.3, 387–407]. Wild-type rSAA protein was shown to form amyloid fibrils in vitro under acidic conditions as shown by electron microscopy, and stained positive with Congo Red and exhibited apple-green birefringence when viewed under polarized light. Under the same conditions mutSAA(G8D) and mutSAAΔ1–11 did not form amyloid fibrils. In conclusion, replacement of Gly-8 by Asp-8 or deletion of the first 11 amino acid residues at the N-terminus of rSAA diminishes its capacity to bind to HDL and decreases amyloid fibril formation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1027-1027
Author(s):  
Melissa A. Blum ◽  
Tivadar Orban ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The prothrombinase complex, composed of the enzyme factor Xa, the cofactor factor Va, and the substrate prothrombin associated on a cell surface in the presence of divalent metal ions, catalyzes the activation of prothrombin to thrombin 300,000-fold more effectively than the enzyme, factor Xa, alone. We have demonstrated that amino acids E323, Y324 and E330, V331 are binding sites for factor Xa on the factor Va heavy chain and are required for coordinating the spatial arrangement of enzyme and substrate directing prothrombin cleavage at two spatially distinct sites. We have also demonstrated that amino acid region 332–336 contains residues that are involved in cofactor function. Peptide studies have identified amino acid residues 334DY335 as major participants in factor Va cofactor activity. We have employed site-directed mutagenesis to study the effect of these amino acids on the catalytic efficiency of prothrombinase. Recombinant factor V molecules with the mutations D334K and Y335F, designated factor VKF, and D334A and Y335A, designated factor VAA were produced, transiently transfected, expressed in COS7L cells, and purified. Kinetic studies demonstrate that while factor VaKF has a KD for factor Xa similar to the KD observed for wild type factor Va, the kcat of prothrombinase assembled with factor VaKF has approximately a 1.5-fold decreased value compared to kcat of prothrombinase assembled with the wild type cofactor molecule. On the contrary, prothrombinase assembled with factor VaAA was found to have a nearly 10-fold decrease kcat, compared to prothrombinase assembled with wild type factor Va. This data suggest that not all amino acid substitutions are well tolerated at positions 334–335. Analysis of the sequence 323–340 using the recently published completed model of coagulation factor Va (pdb entry 1Y61) revealed that amino acids 334–335 are located at the end of a beta-sheet. To ascertain the importance of these mutants and their contribution to cofactor activity we have combined the mutations of amino acids 334–335 with mutations at amino acids 323–324 (E323F, Y324F) and 330–331 (E330M, V331I). We thus created quadruple mutants resulting in recombinant factor VFF/KF, factor VFF/AA, factor VMI/KF and factor VMI/AA. These molecules were transiently expressed in COS-7L cells and studied for their ability to be incorporated into prothrombinase. Free energies associated with the catalytic efficiencies of prothrombinase assembled with each mutant were also calculated (ΔΔGint). The ΔΔGint of interaction for the double mutants, factor VaFF/KF and factor VaMI/KF, had positive values indicating that the side chains of amino acids 330EV331, 323EY324 and 334DY335 located in and around the factor Xa binding site interact in a synergistic manner resulting in the destabilization of the transition state complex and a decelerated rate of catalysis. Conversely, combining the factor Xa binding site mutants with recombinant factor VaAA result in ΔΔGint values of approximately zero. In conclusion, the data demonstrate that replacement of amino acids 334–335 by two hydrophilic residues results in decreased cofactor function. In contrast, replacement of these amino acids by two small hydrophobic residues do not appear to be well tolerated by the cofactor resulting in severely impaired cofactor activity. Altogether, these data demonstrate the importance of amino acid residues D334 and Y335 for the rearrangement of enzyme and substrate required for efficient catalysis.


Sign in / Sign up

Export Citation Format

Share Document