Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2Films:  Transient Photocurrent and Random-Walk Modeling Studies

2001 ◽  
Vol 105 (45) ◽  
pp. 11194-11205 ◽  
Author(s):  
J. van de Lagemaat ◽  
A. J. Frank



2009 ◽  
Vol 2 (6) ◽  
pp. 694 ◽  
Author(s):  
Wei-Hao Chiu ◽  
Chia-Hua Lee ◽  
Hsin-Ming Cheng ◽  
Hsiu-Fen Lin ◽  
Shih-Chieh Liao ◽  
...  


2011 ◽  
Vol 335-336 ◽  
pp. 1117-1120
Author(s):  
Yun Yun Chu ◽  
Yu Chou Chao

Dye adsorption on Ti02and electron transport in Ti02film are the two critical factors in determining efficiency of the the dye sensitized solar cell (DSSC). Increasing dye adsorption which increases the light harvesting is usually achieved by using nanoporous or nanoparticle Ti02films. Electron transport is determined by the inter-particle resistance of Ti02film. Electrospinning is a viable method for forming porous structure materials with high surface area. In this study, it was found that electrospinning is able to achieve good solar cell performance due to the high electron transport caused by the pores in the Ti02film.



2005 ◽  
Vol 109 (24) ◽  
pp. 12093-12098 ◽  
Author(s):  
Gerrit Boschloo ◽  
Anders Hagfeldt






Author(s):  
Suping Jia ◽  
Tong Cheng ◽  
Huinian Zhang ◽  
Hao Wang ◽  
Caihong Hao

Defect states in the TiO2 nanoparticles can cause severe charge recombination and poor electron-transport efficiency when used as a photoanode in dye-sensitized solar cells (DSSCs). Herein, we report a simple and practical way to passivate the surface defects of TiO2 through hydrothermal treating with acetic acid and H2SO4, introducing a high percentage of 101 facets and sulfonic acid functional groups on the TiO2 surface. A high efficiency of 8.12% has been achieved, which is 14% higher than that of untreated TiO2 under the same condition. EIS results prove that the multiacid-treated TiO2 can promote electron transport and reduce charge recombination at the interface of the TiO2 and electrolyte. This work provides an efficient approach to engineer the electron-transport pathway in DSSCs.



Sign in / Sign up

Export Citation Format

Share Document