electron transport rate
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sachin G. Chavan ◽  
Remko A. Duursma ◽  
Michael Tausz ◽  
Oula Ghannoum

Abstract To investigate the interactive effects of elevated CO2 and heat stress (HS), we grew two contrasting wheat cultivars, early-maturing Scout and high-tillering Yitpi, under non-limiting water and nutrients at ambient (aCO2, 450 ppm) or elevated (eCO2, 650 ppm) CO2 and 22°C in the glasshouse. Plants were exposed to two 3-day HS cycles at the vegetative (38.1°C) and/or flowering (33.5°C) stage. At aCO2, both wheat cultivars showed similar responses of photosynthesis and mesophyll conductance to temperature and produced similar grain yield. Relative to aCO2, eCO2 enhanced photosynthesis rate and reduced stomatal conductance and maximal carboxylation rate (Vcmax). During HS, high temperature stimulated photosynthesis at eCO2 in both cultivars, while eCO2 stimulated photosynthesis in Scout. Electron transport rate (Jmax) was unaffected by any treatment. eCO2 equally enhanced biomass and grain yield of both cultivars in control, but not HS, plants. HS reduced biomass and yield of Scout at eCO2. Yitpi, the cultivar with higher grain nitrogen, underwent a trade-off between grain yield and nitrogen. In conclusion, eCO2 improved photosynthesis of control and HS wheat, and improved biomass and grain yield of control plants only. Under well-watered conditions, HS was not detrimental to photosynthesis or growth but precluded a yield response to eCO2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256410
Author(s):  
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

We employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary photochemistry in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait, where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated that kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based photochemistry estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.


2021 ◽  
Author(s):  
Sachin Gorakshnath Chavan ◽  
Remko Duursma ◽  
Michael Tausz ◽  
Oula Ghannoum

To investigate the interactive effects of elevated CO2 and heat stress (HS), we grew two contrasting wheat cultivars, early-maturing Scout and high-tillering Yitpi, under non-limiting water and nutrients at ambient (aCO2, 450 ppm) or elevated (eCO2, 650 ppm) CO2 and 22°C in the glasshouse. Plants were exposed to two 3-day HS cycles at the vegetative (38.1°C) and/or flowering (33.5°C) stage. At aCO2, both wheat cultivars showed similar responses of photosynthesis and mesophyll conductance to temperature and produced similar grain yield. Relative to aCO2, eCO2 enhanced photosynthesis rate and reduced stomatal conductance and maximal carboxylation rate (Vcmax). During HS, high temperature stimulated photosynthesis at eCO2 in both cultivars, while eCO2 stimulated photosynthesis in Scout. Electron transport rate (Jmax) was unaffected by any treatment. eCO2 equally enhanced biomass and grain yield of both cultivars in control, but not HS, plants. HS reduced biomass and yield of Scout at eCO2. Yitpi, the cultivar with higher grain nitrogen, underwent a trade-off between grain yield and nitrogen. In conclusion, eCO2 improved photosynthesis of control and HS wheat, and improved biomass and grain yield of control plants only. Under well-watered conditions, HS was not detrimental to photosynthesis or growth but precluded a yield response to eCO2.


Author(s):  
Riu Furutani ◽  
Miho Ohnishi ◽  
Yuki Mori ◽  
Shinya Wada ◽  
Chikahiro Miyake

2021 ◽  
Author(s):  
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

AbstractWe employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary productivity in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based productivity estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro M. P. Correia ◽  
Anabela Bernardes da Silva ◽  
Margarida Vaz ◽  
Elizabete Carmo-Silva ◽  
Jorge Marques da Silva

Increasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C3 crops, however, the response of this important C4 crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C4–CO2 concentrating mechanism (CCM). Two genotypes of maize with contrasting levels of drought and heat tolerance, B73 and P0023, were acclimatized at high temperature (38°C versus 25°C) under well-watered (WW) or WD conditions. The photosynthetic performance was evaluated by gas exchange and chlorophyll a fluorescence, and in vitro activities of key enzymes for carboxylation (phosphoenolpyruvate carboxylase), decarboxylation (NADP-malic enzyme), and carbon fixation (Rubisco). Both genotypes successfully acclimatized to the high temperature, although with different mechanisms: while B73 maintained the photosynthetic rates by increasing stomatal conductance (gs), P0023 maintained gs and showed limited transpiration. When WD was experienced in combination with high temperatures, limited transpiration allowed water-savings and acted as a drought stress avoidance mechanism. The photosynthetic efficiency in P0023 was sustained by higher phosphorylated PEPC and electron transport rate (ETR) near vascular tissues, supplying chemical energy for an effective CCM. These results suggest that the key traits for drought and heat tolerance in maize are limited transpiration rate, allied with a synchronized regulation of the carbon assimilation metabolism. These findings can be exploited in future breeding efforts aimed at improving maize resilience to climate change.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1469
Author(s):  
Martin A. Stefanov ◽  
Georgi D. Rashkov ◽  
Ekaterina K. Yotsova ◽  
Preslava B. Borisova ◽  
Anelia G. Dobrikova ◽  
...  

The impacts of different NaCl concentrations (0–250 mM) on the photosynthesis of new hybrid lines of maize (Zea mays L. Kerala) and sorghum (Sorghum bicolor L. Shamal) were investigated. Salt-induced changes in the functions of photosynthetic apparatus were assessed using chlorophyll a fluorescence (PAM and OJIP test) and P700 photooxidation. Greater differences between the studied species in response to salinization were observed at 150 mM and 200 mM NaCl. The data revealed the stronger influence of maize in comparison to sorghum on the amount of closed PSII centers (1-qp) and their efficiency (Φexc), as well as on the effective quantum yield of the photochemical energy conversion of PSII (ΦPSII). Changes in the effective antenna size of PSII (ABS/RC), the electron flux per active reaction center (REo/RC) and the electron transport flux further QA (ETo/RC) were also registered. These changes in primary PSII photochemistry influenced the electron transport rate (ETR) and photosynthetic rate (parameter RFd), with the impacts being stronger in maize than sorghum. Moreover, the lowering of the electron transport rate from QA to the PSI end electron acceptors (REo/RC) and the probability of their reduction (φRo) altered the PSI photochemical activity, which influenced photooxidation of P700 and its decay kinetics. The pigment content and stress markers of oxidative damage were also determined. The data revealed a better salt tolerance of sorghum than maize, associated with the structural alterations in the photosynthetic membranes and the stimulation of the cyclic electron flow around PSI at higher NaCl concentrations. The relationships between the decreased pigment content, increased levels of stress markers and different inhibition levels of the function of both photosystems are discussed.


Author(s):  
Roque de Carvalho Dias ◽  
Leandro Bianchi ◽  
Vitor Muller Anunciato ◽  
Leandro Tropaldi ◽  
Paulo Vinicius da Silva ◽  
...  

Abstract Mefenpyr-diethyl is a foliar-acting safener of the pyrazoline chemical group, and after its absorption, the metabolization and detoxification of herbicides occur in treated plants. Studies have demonstrated the protective effect of this safener for the herbicide fenoxaprop-P-ethyl in grass. Thus, this work aimed to evaluate whether a tank mixture of mefenpyr-diethyl has a protective response to haloxyfop-methyl in non-perennial bahiagrass. The experiment had a completely randomized design and was carried out in a greenhouse, using five replications with a 10x2 factorial scheme and ten doses of haloxyfop-methyl (0.00, 0.24, 0.49, 0.97, 1.95, 3.90, 7.79, 15.59, 31.28, and 62.35 g a.i. ha-1) in the presence or absence of a tank mixture of mefenpyr-diethyl (50 g a.i. ha-1). Phytotoxicity and electron transport rate (ETR) were evaluated at 7, 14, 21, and 28 days after application (DAA), in addition to plant height and dry biomass at 28 DAA. In general, phytotoxicity increased due to the higher levels of the herbicide haloxyfop-methyl. The application of mefenpyr-diethyl, in turn, provided lower levels of phytotoxicity, as well as lower reductions in ETR, height, and dry biomass when compared to untreated plants. These results show the safener action of a tank mixture of mefenpyr-diethyl on low doses of haloxyfop-methyl in non-perennial bahiagrass.


2021 ◽  
Vol 22 (9) ◽  
pp. 4973
Author(s):  
Dan Li ◽  
David Mahoudjro Bodjrenou ◽  
Shuting Zhang ◽  
Bin Wang ◽  
Hong Pan ◽  
...  

Banana (Musa spp.), one of the most important fruits worldwide, is generally cold sensitive. In this study, by using the cold-sensitive banana variety Tianbaojiao (Musa acuminate) as the study material, we investigated the effects of Piriformospora indica on banana cold resistance. Seedlings with and without fungus colonization were subjected to 4 °C cold treatment. The changes in plant phenotypes, some physiological and biochemical parameters, chlorophyll fluorescence parameters, and the expression of eight cold-responsive genes in banana leaves before and after cold treatment were measured. Results demonstrated that P. indica colonization reduced the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) but increased the activities of superoxide dismutase (SOD) and catalase (CAT) and the contents of soluble sugar (SS) and proline. Noteworthily, the CAT activity and SS content in the leaves of P. indica-colonized banana were significant (p < 0.05). After 24 h cold treatment, the decline in maximum photochemistry efficiency of photosystem II (Fv/Fm), photochemical quenching coefficient (qP), efficient quantum yield [Y(II)], and photosynthetic electron transport rate (ETR) in the leaves of P. indica-colonized banana was found to be lower than in the non-inoculated controls (p < 0.05). Moreover, although the difference was not significant, P. indica colonization increased the photochemical conversion efficiency and electron transport rate and alleviated the damage to the photosynthetic reaction center of banana leaves under cold treatment to some extent. Additionally, the expression of the most cold-responsive genes in banana leaves was significantly induced by P. indica during cold stress (p < 0.05). It was concluded that P. indica confers banana with enhanced cold resistance by stimulating antioxidant capacity, SS accumulation, and the expression of cold-responsive genes in leaves. The results obtained from this study are helpful for understanding the P. indica-induced cold resistance in banana.


Sign in / Sign up

Export Citation Format

Share Document