External Electric Field Manipulations on Structural Phase Transition of Vanadium Dioxide Nanoparticles and Its Application in Field Effect Transistor

2011 ◽  
Vol 115 (47) ◽  
pp. 23558-23563 ◽  
Author(s):  
W. W. Li ◽  
J. J. Zhu ◽  
J. R. Liang ◽  
Z. G. Hu ◽  
J. Liu ◽  
...  
2016 ◽  
Vol 16 (4) ◽  
pp. 3267-3272
Author(s):  
Masatoshi Sakai ◽  
Norifumi Moritoshi ◽  
Shigekazu Kuniyoshi ◽  
Hiroshi Yamauchi ◽  
Kazuhiro Kudo ◽  
...  

The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region.


2000 ◽  
Vol 655 ◽  
Author(s):  
Matt Poulsen ◽  
S. Adenwalla ◽  
Stephen Ducharme ◽  
V.M. Fridkin ◽  
S.P. Palto ◽  
...  

AbstractX-ray diffraction was used to probe the structural changes associated with the conversion of the paraelectric phase to the ferroelectric phase that results from the application of a large external electric field. The samples under study are ultrathin (150 to 250 Å) Langmuir-Blodgett films of the copolymer vinylidene fluoride (70%) with trifluoroethylene (30%) deposited on aluminum-coated silicon. Theta-2theta X-ray diffraction was used to measure the change in inter-layer spacing perpendicular to the film surface. Upon heating at zero external electric field, the crystalline films undergo a structural phase transition, at 100± 5°C, from the all-trans ferroelectric phase to the trans-gauche paraelectric phase. [1,2] Above the phase transition temperature, the non-polar paraelectric phase can be converted back to the polar ferroelectric phase, in a smooth continuous process, using a large external electric field (∼1 GV/m). For example, at 100° C the ferroelectric phase first appears above 0.2 GV/m and increases steadily in proportion while the paraelectric phase decreases until complete conversion to the ferroelectric phase is achieved at approximately 0.6 GV/m.


Sign in / Sign up

Export Citation Format

Share Document