Structure of the Sulfuric Acid−Ammonia System and the Effect of Water Molecules in the Gas Phase

1999 ◽  
Vol 103 (34) ◽  
pp. 6786-6792 ◽  
Author(s):  
Laura J. Larson ◽  
Aaron Largent ◽  
Fu-Ming Tao



2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.



2011 ◽  
Vol 56 (12) ◽  
pp. 1241-1245 ◽  
Author(s):  
Shi Yin ◽  
MaoFa Ge ◽  
WeiGang Wang ◽  
Ze Liu ◽  
DianXun Wang
Keyword(s):  


2018 ◽  
Vol 18 (3) ◽  
pp. 1835-1861 ◽  
Author(s):  
Johannes Größ ◽  
Amar Hamed ◽  
André Sonntag ◽  
Gerald Spindler ◽  
Hanna Elina Manninen ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2–20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.



2010 ◽  
Vol 10 (12) ◽  
pp. 30539-30568
Author(s):  
T. Kurtén ◽  
T. Petäjä ◽  
J. Smith ◽  
I. K. Ortega ◽  
M. Sipilä ◽  
...  

Abstract. The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the case, this effect has to be taken into account in the interpretation of atmospheric sulfuric acid measurement data, as well as in intercomparison of different CIMS instruments, which likely have different susceptibilities to amine-sulfuric acid clustering.



2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Oscar Ventura ◽  
Vincenzo Barone

<p>The dehalogenation of 2-chloroethanol (2ClEtOH) in gas phase with and without participation of catalytic water molecules has been investigated using methods rooted into the density functional theory. The well-known HCl elimination leading to vinyl alcohol (VA) was compared to the alternative elimination route towards oxirane and shown to be kinetically and thermodynamically more favorable. However, the isomerization of VA to acetaldehyde in the gas phase, in the absence of water, was shown to be kinetically and thermodynamically less favorable than the recombination of VA and HCl to form the isomeric 1-chloroethanol (1ClEtOH) species. This species is more stable than 2ClEtOH by about 6 kcal mol<sup>-1</sup>, and the reaction barrier is 22 kcal mol<sup>-1</sup> vs 55 kcal mol<sup>-1</sup> for the direct transformation of VA to acetaldehyde. In a successive step, 1ClEtOH can decompose directly to acetaldehyde and HCl with a lower barrier (29 kcal mol<sup>-1</sup>) than that of VA to the same products (55 kcal mol<sup>-1</sup>). The calculations were repeated using a single ancillary water molecule (W) in the complexes 2ClEtOH_W and 1ClEtOH_W. The latter adduct is now more stable than 2ClEtOH_W by about 8 kcal mol<sup>-1</sup>, implying that the water molecule increased the already higher stability of 1ClEtOH in the gas phase. However, this catalytic water molecule lowers dramatically the barrier for the interconversion of VA to acetaldehyde (from 55 to 6 kcal mol<sup>-1</sup>). This barrier is now smaller than the one for the conversion to 1ClEtOH (which also decreases, but not so much, from 22 to 12 kcal mol<sup>-1</sup>). Thus, it is concluded that while 1ClEtOH may be a plausible intermediate in the gas phase dehalogenation of 2ClEtOH, it is unlikely that it plays a major role in water complexes (or, by inference, aqueous solution). It is also shown that neither in the gas phase nor in the cluster with one water molecule, the oxirane path is competitive with the VA alcohol path.</p>



2004 ◽  
Vol 15 (8) ◽  
pp. 1123-1127 ◽  
Author(s):  
John J. Gilligan ◽  
Nancy E. Vieira ◽  
Alfred L. Yergey
Keyword(s):  


2006 ◽  
Vol 110 (22) ◽  
pp. 7178-7188 ◽  
Author(s):  
Theo Kurtén ◽  
Markku R. Sundberg ◽  
Hanna Vehkamäki ◽  
Madis Noppel ◽  
Johanna Blomqvist ◽  
...  


ChemInform ◽  
2010 ◽  
Vol 29 (8) ◽  
pp. no-no
Author(s):  
A. H. OTTO ◽  
S. SCHRADER ◽  
T. STEIGER ◽  
M. SCHNEIDER


2021 ◽  
Author(s):  
Daniel Murphy ◽  
Karl Froyd ◽  
Greg Schill ◽  
Charles Brock ◽  
Agnieszka Kupc ◽  
...  

&lt;p&gt;There are distinct types of aerosol particles in the lower stratosphere. Stratospheric sulfuric acid particles with and without meteoric metals coexist with mixed organic-sulfate particles that originated in the troposphere. That these particles remain distinct has important implications for aerosol chemistry and the concentrations of several gas-phase species. Neither semi-volatile organics nor ammonia can be in equilibrium with the gas phase. The gas-phase concentrations of semi-volatile organics and ammonia must be very low, or else the sulfuric acid particles would not stay so pure. The upper concentration limits are around a pptv. Yet the sulfuric acid particles in the Northern Hemisphere show a very small but measurable uptake of organics and ammonia, indicating non-zero gas-phase concentrations of those species. Finally, the organic-sulfate particles must be resistant to photochemical loss, or else they would no longer retain their organic content.&lt;/p&gt;



Sign in / Sign up

Export Citation Format

Share Document