Powder Densification. 2. Viscoelastic Material Properties in Modeling the Uniaxial Compaction of Powders

1998 ◽  
Vol 87 (8) ◽  
pp. 909-916 ◽  
Author(s):  
Susan K. Lum ◽  
Stephen W. Hoag ◽  
Wendy C. Duncan-Hewitt
2004 ◽  
Vol 92 (2) ◽  
pp. 1236-1240 ◽  
Author(s):  
P. Grigg ◽  
D. R. Robichaud ◽  
Z. Del Prete

When skin is stretched, stimuli experienced by a cutaneous mechanoreceptor neuron are transmitted to the nerve ending through the skin. In these experiments, we tested the hypothesis that the viscoelastic response of the skin influences the dynamic response of cutaneous rapidly adapting (RA) neurons. Cutaneous RA afferent neurons were recorded in 3 species of mice (Tsk, Pallid, and C57BL6) whose skin has different viscoelastic properties. Isolated samples of skin and nerve were stimulated mechanically with a dynamic stretch stimulus, which followed a pseudo Gaussian waveform with a bandwidth of 0–60 Hz. The mechanical response of the skin was measured as were responses of single RA cutaneous mechanoreceptor neurons. For each neuron, the strength of association between spike responses and the dynamic and static components of stimuli were determined with multiple logistic regression analysis. The viscoelastic material properties of each skin sample were determined indirectly, by creating a nonlinear (Wiener–Volterra) model of the stress–strain relationship, and using the model to predict the complex compliance (i.e., the viscoelastic material properties). The dynamic sensitivity of RA mechanoreceptor neurons in mouse hairy skin was weakly related to the viscoelastic properties of the skin. Loss modulus and phase angle were lower (indicating a decreased viscous component of response) in Tsk and Pallid than in C57BL6 mice. However, RA mechanoreceptor neurons in Tsk and Pallid skin did not differ from those in C57 skin with regard to their sensitivity to the rate of change of stress or to the rate of change of incremental strain energy. They did have a decreased sensitivity to the rate of change of tensile strain. Thus the skin samples with lower dynamic mechanical response contained neurons with a somewhat lower sensitivity to dynamic stimuli.


2003 ◽  
Vol 125 (1) ◽  
pp. 124-131 ◽  
Author(s):  
J. Crawford Downs ◽  
J-K. Francis Suh ◽  
Kevin A. Thomas ◽  
Anthony J. Bellezza ◽  
Claude F. Burgoyne ◽  
...  

In this report we characterize the viscoelastic material properties of peripapillary sclera from the four quadrants surrounding the optic nerve head in both rabbit and monkey eyes. Scleral tensile specimens harvested from each quadrant were subjected to uniaxial stress relaxation and tensile ramp to failure tests. Linear viscoelastic theory, coupled with a spectral reduced relaxation function, was employed to characterize the viscoelastic properties of the tissues. We detected no differences in the stress-strain curves of specimens from the four quadrants surrounding the optic nerve head (ONH) below a strain of 4 percent in either the rabbit or monkey. While the peripapillary sclera from monkey eyes is significantly stiffer (both instantaneously and in equilibrium) and relaxes more slowly than that from rabbits, we detected no differences in the viscoelastic material properties (tested at strains of 0–1 percent) of sclera from the four quadrants surrounding the ONH within either species group.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Sina Ocal ◽  
M. Umut Ozcan ◽  
Ipek Basdogan ◽  
Cagatay Basdogan

The liver harvested from a donor must be preserved and transported to a suitable recipient immediately for a successful liver transplantation. In this process, the preservation period is the most critical, since it is the longest and most tissue damage occurs during this period due to the reduced blood supply to the harvested liver and the change in its temperature. We investigate the effect of preservation period on the dynamic material properties of bovine liver using a viscoelastic model derived from both impact and ramp and hold experiments. First, we measure the storage and loss moduli of bovine liver as a function of excitation frequency using an impact hammer. Second, its time-dependent relaxation modulus is measured separately through ramp and hold experiments performed by a compression device. Third, a Maxwell solid model that successfully imitates the frequency- and time-dependent dynamic responses of bovine liver is developed to estimate the optimum viscoelastic material coefficients by minimizing the error between the experimental data and the corresponding values generated by the model. Finally, the variation in the viscoelastic material coefficients of bovine liver are investigated as a function of preservation period for the liver samples tested 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 36 h, and 48 h after harvesting. The results of our experiments performed with three animals show that the liver tissue becomes stiffer and more viscous as it spends more time in the preservation cycle.


Author(s):  
Seungbae Park ◽  
Soonwan Chung ◽  
Harold Ackler ◽  
Sandeep Makhar

The viscoelastic material properties of SU-8 and carbon nanotube-reinforced SU-8 composite material are characterized by tensile testing. Dogbone samples of 0.1mm thickness are prepared by micro-fabrication process, which is composed of spin coat, soft bake, expose, and post exposure bake. To fabricate CNT polymer composite, carbon nano-tube of 0.2wt% is mixed with SU-8. To observe the effect of applied strain rate and temperature on Young's modulus and Poisson's ratio, strain rate is varied from 5×10-5 to 2.5×10-4 (/sec) at elevated temperatures in the range of 25 to 200°C. Since the viscoelastic material properties are important in polymer, creep, stress relaxation and dynamic mechanical analyses are performed at elevated temperatures. The viscoelastic material properties of SU-8 and CNT-reinforced SU-8 composite are compared, and the mechanical reliability of these polymers in MEMS applications is discussed.


Soft Matter ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Christian Ganser ◽  
Caterina Czibula ◽  
Daniel Tscharnuter ◽  
Thomas Schöberl ◽  
Christian Teichert ◽  
...  

We present an atomic force microscopy based method to study viscoelastic material properties at low indentation depths with non-negligible adhesion and surface roughness.


2010 ◽  
Vol 47 (3-4) ◽  
pp. 374-382 ◽  
Author(s):  
Andrey V. Boiko ◽  
Victor M. Kulik ◽  
Basel M. Seoudi ◽  
H.H. Chun ◽  
Inwon Lee

Sign in / Sign up

Export Citation Format

Share Document