scholarly journals Understanding Factors Affecting Alignment of Self-Assembling Nanofibers Patterned by Sonication-Assisted Solution Embossing

Langmuir ◽  
2009 ◽  
Vol 25 (12) ◽  
pp. 7084-7089 ◽  
Author(s):  
Albert M. Hung ◽  
Samuel I. Stupp
2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2017 ◽  
Vol 13 ◽  
pp. 1879-1892 ◽  
Author(s):  
Liang Yan ◽  
Duc-Truc Pham ◽  
Philip Clements ◽  
Stephen F Lincoln ◽  
Jie Wang ◽  
...  

Three aqueous self-assembling poly(acrylate) networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6A-(2-aminoethyl)amino-6A-deoxy-6A-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate), PAAβ-CDen, and one of the 3.3% 1-(2-aminoethyl)amidoadamantyl, ADen, 3.0% 1-(6-aminohexyl)amidoadamantyl, ADhn, or 2.9% 1-(12-aminododecyl)amidoadamantyl, ADddn, randomly substituted poly(acrylate)s, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamantyl substituents is ca. 3:1. The variation of the characteristics of the complexation of the dyes methyl red, methyl orange and ethyl orange in these three networks and by β-cyclodextrin, β-CD, and PAAβ-CDen alone provides insight into the factors affecting dye complexation. The rates of release of the dyes through a dialysis membrane from the three aqueous networks show a high dependence on host–guest complexation between the β-CDen substituents and the dyes as well as the structure and the viscosity of the network as shown by ITC, 1H NMR and UV–vis spectroscopy, and rheological studies. Such networks potentially form a basis for the design of controlled drug release systems.


2012 ◽  
Vol 9 (1) ◽  
pp. 43
Author(s):  
Huey Ling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study of biological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi- and tri-block copolymers to DNA structures as well as simple and complex proteins and peptides. The ultimate goal is to harness molecular self-assembly such that design and control of bottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes of life and non-life science applications. Such aspirations can be achieved through understanding the fundamental principles behind the self­ organisation and self-synthesis processes exhibited by biological systems.


2021 ◽  
pp. 2100347
Author(s):  
Megan E. Pitz ◽  
Alexandra M. Nukovic ◽  
Margaret A. Elpers ◽  
Angela A. Alexander‐Bryant

Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


Author(s):  
Christine M. Dannels ◽  
Christopher Viney

Processing polymers from the liquid crystalline state offers several advantages compared to processing from conventional fluids. These include: better axial strength and stiffness in fibers, better planar orientation in films, lower viscosity during processing, low solidification shrinkage of injection moldings (thermotropic processing), and low thermal expansion coefficients. However, the compressive strength of the solid is disappointing. Previous efforts to improve this property have focussed on synthesizing stiffer molecules. The effect of microstructural scale has been overlooked, even though its relevance to the mechanical and physical properties of more traditional materials is well established. By analogy with the behavior of metals and ceramics, one would expect a fine microstructure (i..e. a high density of orientational defects) to be desirable.Also, because much microstructural detail in liquid crystalline polymers occurs on a scale close to the wavelength of light, light is scattered on passing through these materials.


1990 ◽  
Vol 54 (11) ◽  
pp. 638-643 ◽  
Author(s):  
PC Damiano ◽  
ER Brown ◽  
JD Johnson ◽  
JP Scheetz

1976 ◽  
Vol 7 (4) ◽  
pp. 207-219 ◽  
Author(s):  
Constance P. DesRoches

A statistical review provides analysis of four years of speech therapy services of a suburban school system which can be used for comparison with other school system programs. Included are data on the percentages of the school population enrolled in therapy, the categories of disabilities and the number of children in each category, the sex and grade-level distribution of those in therapy, and shifts in case-load selection. Factors affecting changes in case-load profiles are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document