Molecular Recognition between 2,4,6-Triaminopyrimidine Lipid Monolayers and Complementary Barbituric Molecules at the Air/Water Interface:  Effects of Hydrophilic Spacer, Ionic Strength, and pH

Langmuir ◽  
1998 ◽  
Vol 14 (18) ◽  
pp. 5164-5171 ◽  
Author(s):  
V. Marchi-Artzner ◽  
F. Artzner ◽  
O. Karthaus ◽  
M. Shimomura ◽  
K. Ariga ◽  
...  
2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Rakesh Kumar Harishchandra ◽  
Mohammed Saleem ◽  
Hans-Joachim Galla

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs.


2014 ◽  
Vol 550 ◽  
pp. 621-629 ◽  
Author(s):  
Rute I.S. Romão ◽  
José M.G. Martinho ◽  
Amélia M.P.S. Gonçalves da Silva

Langmuir ◽  
2018 ◽  
Vol 34 (21) ◽  
pp. 6095-6108 ◽  
Author(s):  
Katharina Widder ◽  
Jennica Träger ◽  
Andreas Kerth ◽  
George Harauz ◽  
Dariush Hinderberger

2020 ◽  
Vol 19 (3) ◽  
pp. 398-414
Author(s):  
Naga Venkata Rakesh Nimmagadda ◽  
Lokeswara Rao Polisetty ◽  
Anantha Subramanian Vaidyanatha Iyer

Abstract High-speed planing crafts have successfully evolved through developments in the last several decades. Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design. However, sometimes such analyses suffer inaccuracies since the air–water interface effects, especially in the transition phase, are not fully accounted for. Hence, understanding the behaviour at the transition speed is of fundamental importance for the designer. The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz., knuckles, chines and transom, with resultant spray generation. In such cases, the application of potential theory at high speeds introduces limitations. This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects, with validations through experiments to compare the drag, dynamic trim and wetted surface area. The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects. The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests. It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids. Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag, and their ability to capture the spray resulting from the air–water interaction. The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface, drag at the pre-planing and full planing range and dynamic trim angles.


Sign in / Sign up

Export Citation Format

Share Document