actual flow
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 3)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 102
Author(s):  
Charles R. Ortloff

The Inka site of Tipon had many unique hydraulic engineering features that have modern hydraulic theory counterparts. For example, the Tipon channel system providing water to the Principal Fountain had a channel contraction inducing critical flow as determined by CFD analysis- this feature designed to induce flow stability and preserve the aesthetic display of the downstream Waterfall. The Main Aqueduct channel sourced by the Pukara River had a given flow rate to limit channel overbank spillage induced by a hydraulic jump at the steep-mild slope transition channel location as determined by use of modern CFD methods- this flow rate corresponds to the duplication of the actual flow rate used in the modern restoration using flow blockage plates placed in the channel to limit over-bank spillage. Additional hydraulic features governing the water supply to agricultural terraces for specialty crops constitute further sophisticated water management control systems discussed in detail in the text.


2021 ◽  
Vol 34 (06) ◽  
pp. 1751-1760
Author(s):  
Aleksandr Mitrofanov ◽  
P. Karpov ◽  
Andrey Peshkov

The article presents the results of a study of innovative technology on improving the rationing of diesel fuel consumption on rolling stock in the railway industry. As an object of research, fuel consumption was studied on a Automotrisa diesel editing - ADE-1, which is used in the electrification and power supply facilities of the Transenergo Directorate. Motorized carriage loading transport (MLT – 6), which is used in the economy of the track. On the basis of a number of regulatory documents of the Russian Railways company, the Samara State University of Railway Transport was entrusted with the analysis of the efficiency of fuel consumption of SSPS on these types of rolling stock at one of the railway landfills. The special self-propelled rolling stock of the Russian Railways company was studied as an object of research. The method of forming fuel consumption standards by identifying the actual values of fuel consumption and indicators of rolling stock operating modes is considered. The statistical methods used in the research allow us to set the rate of consumption in the range of 8% of the actual flow rate. Based on the use of the obtained fuel consumption rate, a method for identifying and evaluating the level of unauthorized fuel overspendings (draining) is provided.


Author(s):  
Ivan N. Loginov ◽  
Sergey A. Korshunov

The operating principle of leak detection systems, based on registration of transported medium hydroacoustic fluctuations, appearing due to pipeline loss of containment, consists of identification of hydraulic impulse, originating in case of leakage, using acoustic dynamic pressure measuring sensors - hydrophones. However, during pumping at pipeline stationary operating mode hydrophones also register background noises, which can mask the leakage signal. To separate the useful leakage signal it is important to construct an algorithm that allows lowering the noise component of the signals. Within the scope of experimental research, two pairs of hydrophones were used, which were installed at the functioning main oil pipeline at a distance of 20 km of each other. The distance between the adjacent paired hydrophones was no more than 1 km. Leaks were imitated by draining the product (diesel fuel) in the middle of control section. Authors considered the methods of noisy signals filtration and possible methods of cleared signals processing to determine the leak parameters. Mathematical algorithm that allows minimizing the influence of signal noise by filtration and mutual hydrophone readings compensation was proposed. It is established, that the developed algorithm allows detecting the leakages of low intensity (up to 0.1 % of actual flow) in cases of stationary pipeline operating mode and pumping stop mode. Принцип работы систем обнаружения утечек, основанных на регистрации гидроакустических колебаний транспортируемой среды, возникающих из-за разгерметизации трубопровода, состоит в идентификации гидравлического импульса, возникающего при образовании утечки, с помощью акустических датчиков измерения динамического давления – гидрофонов. Однако гидрофоны в процессе перекачки при стационарном режиме работы трубопровода регистрируют в том числе фоновые шумы, которые могут маскировать сигнал от утечки. Для выделения полезного сигнала утечки актуально построение алгоритма, позволяющего понизить шумовые составляющие сигналов. В рамках экспериментальных исследований использовались две пары гидрофонов, которые устанавливались на действующем магистральном нефтепродуктопроводе на расстоянии 20 км друг от друга. Расстояние между соседними гидрофонами в паре составляло не более 1 км. Утечки имитировались путем выполнения натурных сливов продукта (дизельного топлива) в середине контрольного участка. Авторами рассмотрены методы фильтрации зашумленных сигналов и возможные способы обработки очищенных сигналов с целью определения параметров утечки. Предложен математический алгоритм, позволяющий минимизировать влияние шумовых составляющих сигналов путем фильтрации и взаимной компенсации показаний пар гидрофонов. Установлено, что разработанный алгоритм позволяет обнаруживать утечки малой интенсивности (до 0,1 % от фактического расхода) в условиях стационарного режима работы трубопровода и режима остановленной перекачки.


2021 ◽  
Vol 932 ◽  
Author(s):  
O. Devauchelle ◽  
P. Popović ◽  
E. Lajeunesse

In a shallow channel, the flow transfers most of its momentum vertically. Based on this observation, one often neglects the momentum that is transferred across the stream – the core assumption of the shallow-water theory. In the context of viscous flows, this approximation is referred to as the ‘lubrication theory’, in which one assumes that the shear stress exerted by the fluid on the substrate over which it flows is proportional to its velocity. Here, we revise this theory to account for the momentum that viscosity transfers across a shallow laminar flow, while keeping the problem low-dimensional. We then test the revised lubrication theory against analytical and numerical solutions of the exact problem. We find that, at a low computational cost, the present theory represents the actual flow more accurately than the classical lubrication approximation. This theoretical improvement, devised with laboratory rivers in mind, should also apply to other geophysical contexts, such as ice flows or forming lava domes.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052004
Author(s):  
S V Svetlakova ◽  
A N Krasnov ◽  
M Yu Prakhova

Abstract The problem of measuring the flow rate of wells with low production rates is relevant for many oil fields. Conventional flow meters are not suitable for such cases, and installing an additional flow meter for each well is impractical. At the same time, wells with sucker-rod pumping units (the majority of wells) are outfitted with dynamographs for continuous diagnostics of the pumping equipment state. Dynamograms allow determining the theoretical flow rate of the well easily, however, a mathematical model is required to estimate the actual flow rate. For the correction of flow rate obtained from dynamograms, the authors of this study propose using models based on regression equations that link the calculated valueswith the measurements made by a reference instrument. The results of the experiments have confirmed the eligibility of this approach.


2021 ◽  
Author(s):  
Kambiz Razminia ◽  
Alain C. Gringarten

Abstract Objectives/Scope Single well deconvolution (von Schroeter et al., 2001) has been added to the well test interpretation toolbox nearly twenty years ago. In recent years, the single well deconvolution algorithm has been extended to multiple interfering wells (Cumming et al., 2013), and further improved with the additions of constraints to account for existing a-priory knowledge on the reservoir (constrained multiwell deconvolution, Cumming et al., 2019). The main objective of multiwell deconvolution is to identify the signatures of all wells involved and the interference signals between wells, from which information can be extracted about the reservoir that may not be obtainable otherwise, e.g. heterogeneities, boundaries and compartmentalization. The single well deconvolution algorithm has also been shown to be capable of restoring erroneous or missing rates (Gringarten, 2010). As shown in this paper, the same is true with multiwell deconvolution, which is able to restore erroneous or missing rates in all the wells involved. Methods, Procedures, Process Starting with arbitrary initial guesses for the missing rates in the various wells involved, we use multiwell deconvolution to estimate these missing flow rates or correct for erroneous ones. Two methods are presented: (1) we use unconstrained multiwell deconvolution as a first step to estimate the missing/erroneous rates, then use constrained multiwell deconvolution with these rates to estimate deconvolved derivatives; and (2) we restore/correct the flow rates and derive deconvolved derivatives simultaneously using constrained multiwell deconvolution. We show that the first approach is more accurate than the second one. In both approaches, we only obtain rates that are proportional to the true flow rates. To obtain the true flow rates, we need to know either one of the actual flow rates in each well, or the corresponding permeabilities. Results, Observations, Conclusions We prove the ability of multiwell deconvolution to estimate rates on synthetic oil reservoirs and gas reservoirs with moderate average reservoir pressure depletion, that include non-interfering wells. We then apply to oil and gas field examples and compare restored vs. actually measured rates. In all cases, the agreement is very good. Novel/Additive Information Using only measured pressure data, constrained multiwell deconvolution can be used to restore unknown flow rates and/or correct for erroneous rates, in addition to estimating deconvolved derivatives of all wells. This is particularly useful in the case of allocated rates or when rates are missing in some of the interfering wells.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yasser Abuouf ◽  
Muhamed AlBadawi ◽  
Shinichi Ookawara ◽  
Mahmoud Ahmed

Abstract Background Coronary artery disease is an abnormal contraction of the heart supply blood vessel. It limits the oxygenated blood flow to the heart. Thus, diagnosing its severity helps physicians to select the appropriate treatment plan. Fractional flow reserve (FFR) is the most accurate method to pinpoint the stenosis severity. However, inserting the guidewire across stenosis may cause a false overestimation of severity. Methods To estimate the errors due to guidewire insertion, reconstructed three-dimensional coronary artery geometry from a patient-specific scan is used. A comprehensive three-dimensional blood flow model is developed. Blood is considered non-Newtonian and the flow is pulsatile. The model is numerically simulated using realistic boundary conditions. Results The FFR value is calculated and compared with the actual flow ratio. Additionally, the ratio between pressure drop and distal dynamic pressure (CDP) is studied. The obtained results for each case are compared and analyzed with the case without a guidewire. It was found that placing the guidewire leads to overestimating the severity of moderate stenosis. It reduces the FFR value from 0.43 to 0.33 with a 23.26% error compared to 0.44 actual flow ratio and the CDP increases from 5.31 to 7.2 with a 35.6% error. FFR value in mild stenosis does not have a significant change due to placing the guidewire. The FFR value decreases from 0.83 to 0.82 compared to the 0.83 actual flow ratio. Conclusion Consequently, physicians should consider these errors while deciding the treatment plan.


Author(s):  
Marcus Olofsson ◽  
Thomas Önskog ◽  
Niklas L. P. Lundström

AbstractThe mathematical theory for optimal switching is by now relatively well developed, but the number of concrete applications of this theoretical framework remains few. In this paper, we bridge parts of this gap by applying optimal switching theory to a conceptual production planning problem related to hydropower. In particular, we study two examples of small run-of-river hydropower plants and provide an outline of how optimal switching can be used to create fully automatic production schemes for these. Along the way, we create a new model for random flow of water based on stochastic differential equations and fit this model to historical data. We benchmark the performance of our model using actual flow data from a small river in Sweden and find that our production scheme lies close to the optimal, within 2 and 5 %, respectively, in a long term investigation of the two plants considered.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 190
Author(s):  
Zhe Su ◽  
Xianying Feng ◽  
Hui Li ◽  
Jiajia Lu ◽  
Zhaoguo Wang ◽  
...  

A new method is presented to model and predict the flow fields of the hydrostatic leadscrews with greater accuracy. It is different from those available methods, in which various bearings are assumed to be equivalent to the screw-nut pair within a pitch by various means. In this new method, a helical coordinate system adapting to the boundaries of the flow fields is constructed, which makes the screw-nut meshing clearance calculated more accurate. Based on the finite difference method (FDM), the meshing clearance is discretized into a number of flow fields, which are created by numerous couples of parallel-plate elements moving relatively along the helicoid. The numerical model is solved in MATLAB, and the analyses about the pressure fields demonstrate its favorable performances in reflecting the actual flow fields. Furthermore, the simulation results are compared with the experimental values, confirming the feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document