scholarly journals Depression of glass transition temperatures of polymer networks by diluents

1983 ◽  
Vol 16 (2) ◽  
pp. 244-249 ◽  
Author(s):  
Genit ten Brinke ◽  
Frank E. Karasz ◽  
T. S. Ellis

2005 ◽  
Vol 898 ◽  
Author(s):  
Christopher Michael Yakacki ◽  
Robin Shandas ◽  
Craig Lanning ◽  
Ken Gall

AbstractThe shape-memory effect was examined in polymer stents intended for cardiovascular applications. Four polymer networks were synthesized from poly(ethylene glycol) dimethacrylate and tert-butyl acrylate with 10 wt% and 20 wt% crosslinker, and with glass transition temperatures (Tg) of 52°C and 55°C. Solid and 50% porous stents were manufactured and tested for free strain recoverability at temperatures at or just above 37°C. Stents with lower glass transition temperatures and a higher degree of crosslinking recovered faster than their counterparts. Lower deformation (packaging) temperatures and higher recovery temperatures induce more rapid recovery. The presence of geometrical features, such as pores, initiated recovery sooner, but had negligible influence on overall recovery.





2011 ◽  
Vol 217-218 ◽  
pp. 1606-1610
Author(s):  
Dong Jiang ◽  
Xiao Ran Zhang ◽  
Yan Mei Ma ◽  
Cheng You Ma

A series of random polysulfone/polyethersulfone (PSF/PES) copolymers were synthesized by the polycondensation of 4, 4'-isopropylidendiphenol, 4, 4΄-dihyolroxy diphenyl sulfone and 4, 4'-dichlorodiphenyl sulfone in the presence of K2CO3. We obtained a series of copolymers by changing the molar ratio of 4, 4΄-dihyolroxy diphenyl sulfone and 4, 4'-isopropylidendiphenol (it was marked as the ratio of S:A). The copolymers have the similar solubility with polyethersulfone. They also have high glass transition temperatures (Tg: 199°C~229°C) and 5% weight loss temperatures (4, 4'-isopropylidendiphenol: 4, 4΄-dihyolroxy diphenyl sulfone=1:1, Td5=497°C). At the same time the elongation at break is much higher than that of PES, while the tensile strength is a little lower than that of PES.



2012 ◽  
Vol 54 (1) ◽  
pp. 48-60 ◽  
Author(s):  
Yanli Liu ◽  
Zhengde Tan ◽  
Shihua Zhang


Sign in / Sign up

Export Citation Format

Share Document