Chain Dynamics and Strain-Induced Crystallization of Pre- and Postvulcanized Natural Rubber Latex Using Proton Multiple Quantum NMR and Uniaxial Deformation by in Situ Synchrotron X-ray Diffraction

2012 ◽  
Vol 45 (16) ◽  
pp. 6491-6503 ◽  
Author(s):  
Justin Che ◽  
Shigeyuki Toki ◽  
Juan L. Valentin ◽  
Justo Brasero ◽  
Adun Nimpaiboon ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25171-25182 ◽  
Author(s):  
Xuan Fu ◽  
Guangsu Huang ◽  
Zhengtian Xie ◽  
Wang Xing

The existence of a denser network domain formed by incorporation of filler and its vital role in determining the strain-induced crystallization behavior of nanocomposites is proved by in situ synchrotron X-ray diffraction characterization.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Pinzhang Chen ◽  
Jingyun Zhao ◽  
Yuanfei Lin ◽  
Jiarui Chang ◽  
Lingpu Meng ◽  
...  

The structural evolution of NR during stretching at −40 °C and in the strain–temperature space.


2005 ◽  
Vol 38 (16) ◽  
pp. 7064-7073 ◽  
Author(s):  
Shigeyuki Toki ◽  
Igors Sics ◽  
Benjamin S. Hsiao ◽  
Masatoshi Tosaka ◽  
Sirilux Poompradub ◽  
...  

2014 ◽  
Vol 87 (1) ◽  
pp. 184-196 ◽  
Author(s):  
S. Beurrot-Borgarino ◽  
B. Huneau ◽  
E. Verron ◽  
D. Thiaudière ◽  
C. Mocuta ◽  
...  

ABSTRACT Strain-induced crystallization of carbon black-filled natural rubber is investigated by wide-angle X-ray diffraction (WAXD) during in situ fatigue tests using synchrotron radiation. Thanks to an original experimental method, we measure the evolution with the number of cycles of: (i) the index of crystallinity, both (ii) size and (iii) orientation of the crystallites, and finally (iv) the lattice parameters. It is shown that when the minimum stretch ratio of the fatigue test is lower than the onset of melting of the crystallites, then the index of crystallinity and the size of the crystallites decrease, whereas they increase when the minimum stretch ratio is higher than the onset of melting. For all the fatigue tests, the misorientation of the crystallites slightly decreases and the lattice parameters remain constant with the number of cycles.


2008 ◽  
Vol 81 (5) ◽  
pp. 753-766 ◽  
Author(s):  
Sureerut Amnuaypornsri ◽  
Jitladda Sakdapipanich ◽  
Shigeyuki Toki ◽  
Benjamin S. Hsiao ◽  
Naoya Ichikawa ◽  
...  

Abstract The effects of proteins and phospholipids in natural rubber (NR) on the strain-induced crystallization behavior during uniaxial deformation were studied by in-situ synchrotron wide-angle X-ray diffraction (WAXD) technique and simultaneous measurements of stress-strain relation. The influences of proteins and phospholipids in NR were evaluated separately by decomposition methods using deproteinization and lipase treatment, respectively. It was found that both components form a naturally occurring network, which is responsible for the strain-induced crystallizability of unvulcanized NR and the corresponding high mechanical property. This network also plays a significant role in strain-induced crystallization of vulcanized natural rubber.


2004 ◽  
Vol 77 (2) ◽  
pp. 317-335 ◽  
Author(s):  
Shigeyuki Toki ◽  
Igors Sics ◽  
Shaofeng Ran ◽  
Lizhi Liu ◽  
Benjamin S. Hsiao ◽  
...  

Abstract In-situ synchrotron wide-angle X-ray diffraction (WAXD) studies and simultaneous measurements of stress and strain during uniaxial stretching of various vulcanized rubbers were carried out (at room temperature and 0°C) to reveal the strain-induced molecular orientation and crystallization relationships. Rubbers evaluated included natural rubber (NR), synthetic poly-isoprene rubber (IR), poly-cis-1,4-butadiene rubber (BR) and butyl rubber (IIR). Some universal features were observed in these systems: (i) At high strains (> 5.0), the majority of the chains (up to 50 ≈ 75%) in natural and synthetic rubbers remained in the un-oriented amorphous state with only a small amount of crystalline fraction formed (10–20%). The rest of the chains were in the oriented amorphous state. (ii) During deformation, the oriented amorphous chains acted as precursors to strain-induced crystallization. A network of micro-fibrillar crystallites is formed within the closely populated vulcanization points, leading to the enhancement of mechanical properties at high strains. Different rubbers exhibited different behaviors during strain-induced crystallization. For example, poly-isoprenes (NR and IR vulcanized with sulfur and peroxide) showed strain-induced crystallization at a low strain of 2.5, resulting in larger crystalline but smaller oriented amorphous fractions. In contrast, BR and IIR crystallized at a higher strain of 4.0 lead to higher molecular orientation, higher oriented amorphous, but smaller crystalline fractions. The relationship between the molecular orientation and crystallization in strained rubber depends on the intrinsic crystallizability of the chains and the topology of the crosslinked network.


Sign in / Sign up

Export Citation Format

Share Document