Polyelectrolyte Brush Interaction with Multivalent Ions

1999 ◽  
Vol 32 (24) ◽  
pp. 8189-8196 ◽  
Author(s):  
E. B. Zhulina ◽  
O. V. Borisov ◽  
T. M. Birshtein
Author(s):  
Long Yao ◽  
Shunlong Ju ◽  
Xuebin Yu

Rechargeable aluminum batteries (RABs) based on multivalent ions transfer have attracted great attention due to their large specific capacities, natural abundance, and high safety of metallic Al anode. However, the...


Author(s):  
Chandra Chowdhury ◽  
Pranab Gain ◽  
Ayan Datta

Utilization of multivalent ions such as Ca(II), Mg(II), Al(III) in the energy storage devices opens up new opportunities to store energy density in a more efficient manner rather than monovalent...


Langmuir ◽  
2021 ◽  
Author(s):  
Shohei Shiomoto ◽  
Hayato Higuchi ◽  
Kazuo Yamaguchi ◽  
Hiromitsu Takaba ◽  
Motoyasu Kobayashi

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 125
Author(s):  
Tobias Gulden ◽  
Alex Kamenev

We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels.


2010 ◽  
Vol 152 (1-3) ◽  
pp. 40-45 ◽  
Author(s):  
Daniel Fologea ◽  
Eric Krueger ◽  
Redwan Al Faori ◽  
Rachel Lee ◽  
Yuriy I. Mazur ◽  
...  
Keyword(s):  

2014 ◽  
Vol 70 (a1) ◽  
pp. C365-C365
Author(s):  
Tina Nestler ◽  
William Förster ◽  
Stefan Braun ◽  
Wolfram Münchgesang ◽  
Falk Meutzner ◽  
...  

Energy conversion and storage has become the main challenge to satisfy the growing demand for renewable energy solutions as well as mobile applications. Nowadays, several technologies exist for the conversion of electric energy into e. g. heat, light and motion or vice versa. Among a large variety of storage concepts, the conversion of electrical in chemical energy is of great relevance in particular for location-independent use. Main factors that still limit the use of electrochemical cells are the volumetric and gravimetric energy density, cyclability as well as safety. The concept for a new thin-film rechargeable battery that possibly improves these properties is presented. In contrast to the widespread lithium-ion technology, the discussed battery is based on the redox reaction of multivalent Al-ions and their migration through solid electrolytes. The ion conduction and insertion processes in the crystalline materials of the suggested cell are discussed under a crystallographic point of view to identify suitable electrode and separator materials. A multilayer-stack of all-solid-state batteries is synthesized by pulsed laser deposition and investigated in situ, i. e. during charge and discharge, by X-ray reflection and diffraction methods. The correlation between crystal structure, morphology and electrical performance is investigated in order to characterize the ion diffusion and insertion process.


Sign in / Sign up

Export Citation Format

Share Document