The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide

ACS Nano ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 1638-1645 ◽  
Author(s):  
Priyank V. Kumar ◽  
Marco Bernardi ◽  
Jeffrey C. Grossman
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1199 ◽  
Author(s):  
Liulong Guo ◽  
Hongxia Yan ◽  
Zhengyan Chen ◽  
Qi Liu ◽  
Yuanbo Feng ◽  
...  

A novel graphene-based nanocomposite particles (NH2-rGO/WS2), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS2) grafted with active amino groups (NH2-rGO/WS2), was successfully synthesized by an effective and facile method. NH2-rGO/WS2 nanoparticles were then used to fabricate new bismaleimide (BMI) composites (NH2-rGO/WS2/BMI) via a casting method. The results demonstrated that a suitable amount of NH2-rGO/WS2 nanoparticles significantly improved the mechanical properties of the BMI resin. When the loading of NH2-rGO/WS2 was only 0.6 wt %, the impact and flexural strength of the composites increased by 91.3% and 62.6%, respectively, compared to the neat BMI resin. Rare studies have reported such tremendous enhancements on the mechanical properties of the BMI resin with trace amounts of fillers. This is attributable to the unique layered structure of NH2-rGO/WS2 nanoparticles, fine interfacial adhesion, and uniform dispersion of NH2-rGO/WS2 in the BMI resin. Besides, the thermal gravimetrical analysis (TGA) revealed that the addition of NH2-rGO/WS2 could also improve the stability of the composites.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 910 ◽  
Author(s):  
Jan Broda ◽  
Janusz Fabia ◽  
Marcin Bączek ◽  
Czesław Ślusarczyk

An effective β-nucleating agent for polypropylene crystallization was obtained by the functionalization of reduced graphene oxide with calcium pimelate. The nucleating ability of the modified reduced graphene oxide (rGO-CP) was confirmed during non-isothermal crystallization. In further examinations, the rGO-CP was used as an additive to modify polypropylene fibers. The fibers were extruded in laboratory conditions. Gravity spun fibers containing three different concentrations of the rGO-CP and fibers taken at three different velocities were obtained. The supramolecular structure of the fibers was examined by means of calorimetric and X-Ray Scattering methods (DSC, WAXS, and SAXS). The considerable amount of β-iPP was obtained only in the gravity spun fibers. In the fibers extruded at higher velocities, the diminishing impact of the additive on the fibers structure was revealed. The changes observed in the fiber structure in connection with the impact of the additive on polypropylene crystallization was discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Kazimierz Reszka ◽  
Mieczysław Szczypiński ◽  
Michał Marek Szczypiński ◽  
Elżbieta Kopczyńska ◽  
...  

The aim of the present study is to examine the effect of the addition of carbon nanoparticles (σsp2 hybridization) on the mechanical properties of foamed polystyrene. In this work, we focus on the study of the impact of compressive stress, tensile strength, bending strength, thermal conductivity ratio (λ), and water absorption of expanded polystyrene (EPS) reinforced with reduced graphene oxide and graphite. The results were compared with pristine EPS and reduced graphene oxide-reinforced EPS. All the nanocomposite specimens used for testing had a similar density. The study reveals that the nanocomposites exhibit different thermal conductivities and mechanical properties in comparison to pristine EPS. The enhancement in the properties of the nanocomposite could be associated with a more extensive structure of elementary cells of expanded polystyrene granules.


2015 ◽  
Vol 120 (1) ◽  
pp. 281-290 ◽  
Author(s):  
Lamprini Sygellou ◽  
Georgios Paterakis ◽  
Costas Galiotis ◽  
Dimitrios Tasis

RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13964-13971 ◽  
Author(s):  
Md. Selim Arif Sher Shah ◽  
Shoaib Muhammad ◽  
Jong Hyeok Park ◽  
Won-Sub Yoon ◽  
Pil J. Yoo

A conducting polymer matrix of PEDOT:PSS is incorporated into SnO2/reduced graphene oxide composite for increasing the stability of lithium-ion battery anodes.


2021 ◽  
Vol 27 ◽  
pp. 102276
Author(s):  
Huan Zhang ◽  
Meiling Huang ◽  
Jie Song ◽  
Daming Sun ◽  
Yingjun Qiao ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4696
Author(s):  
Jung-Chuan Chou ◽  
Tsu-Yang Lai ◽  
Yu-Hsun Nien ◽  
Chih-Hsien Lai ◽  
Po-Yu Kuo ◽  
...  

How to detect uric acid is an important issue. For the purpose of preparing a potentiometric uric acid biosensor, this research used nickel oxide (NiO) as the sensing film to deposit it onto the substrate by radio frequency sputtering, then modified it with reduced graphene oxide (rGO) and silver (Ag) nanowires. Reduced graphene oxide (rGO) not only has excellent electrical conductivity, but also can make the surface of the film have a larger surface area, while AgNWs have also been proven to improve catalytic activity; hence, these two materials were chosen as sensor modifiers. Finally, the stability and the various characteristics of the uric acid biosensor were investigated using a voltage–time (V–T) system. The results showed that the AgNW–uricase/rGO/NiO uric acid biosensor has average sensitivity with 4.66 mV/(mg/L). In addition, the sensor has good stability.


RSC Advances ◽  
2014 ◽  
Vol 4 (42) ◽  
pp. 22230-22240 ◽  
Author(s):  
Xin Liu ◽  
Yanhui Sui ◽  
Changgong Meng ◽  
Yu Han

The local defect structures on rGO determine the stability, the electronic structure and the reactivity of the Ru/rGO composites.


Sign in / Sign up

Export Citation Format

Share Document