scholarly journals Cost effective and ultra-low density cellulose based hybrid aerogel from waste biomaterials towards sustainable super thermal insulation

Author(s):  
Dr. Pradip Kumar Maji ◽  
PRAGYA GUPTA
2017 ◽  
Vol 95 ◽  
pp. 382-393 ◽  
Author(s):  
Guilong Wang ◽  
Jinchuan Zhao ◽  
Guizhen Wang ◽  
Lun Howe Mark ◽  
Chul B. Park ◽  
...  

2016 ◽  
Vol 852 ◽  
pp. 1482-1487
Author(s):  
Fan Cheng ◽  
Yu Hao Jiang ◽  
Jin Bo Chen ◽  
Peng Bo Lu ◽  
Ling Feng Su ◽  
...  

Eco-friendly building materials with perfect thermal insulation & sound absorption property have become intriguing and eye-catching in recent years. In this work, the ultra low-density binderless sandwiching materials were firstly fabricated with ultra low-density of 60-80 kg/m3 by self-designed rapid steam injection technology. The main experimental factor of density, holding time, transmission time, steam injection pressure and fiber’s dimension was respectively investigated to their effects on formation of the new building materials. IR, Py GC-MS and AFM analysis were performed to study the mechanism of binderless sandwiching materials under steam injection process. The bending strength, thermal insulation & sound absorption property of the new materials were also studied. This new building material with no resin use and no formaldehyde release is expected to be reserved as the sandwich for designing thermal insulation & noise reduction building materials.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 345 ◽  
Author(s):  
Danny Illera ◽  
Jaime Mesa ◽  
Humberto Gomez ◽  
Heriberto Maury

Cellulose-based aerogels hold the potential to become a cost-effective bio-based solution for thermal insulation in buildings. Low thermal conductivities (<0.025 W·m−1·K−1) are achieved through a decrease in gaseous phase contribution, exploiting the Knudsen effect. However, several challenges need to be overcome: production energy demand and cost, moisture sensitivity, flammability, and thermal stability. Herein, a description and discussion of current trends and challenges in cellulose aerogel research for thermal insulation are presented, gathered from studies reported within the last five years. The text is divided into three main sections: (i) an overview of thermal performance of cellulose aerogels, (ii) an identification of challenges and possible solutions for cellulose aerogel thermal insulation, and (iii) a brief description of cellulose/silica aerogels.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


Sign in / Sign up

Export Citation Format

Share Document