scholarly journals Computer sImulations of membrane heterogeneity and kinetics

Author(s):  
Ron Elber
Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
Vladimir Yu. Kolosov ◽  
Anders R. Thölén

In this paper we give a short overview of two TEM applications utilizing the extinction bend contour technique (BC) giving the advantages and disadvantages; especially we consider two areas in which the BC technique remains unique. Special attention is given to an approach including computer simulations of TEM micrographs.BC patterns are often observed in TEM studies but are rarely exploited in a serious way. However, this type of diffraction contrast was one of the first to be used for analysis of imperfections in crystalline foils, but since then only some groups have utilized the BC technique. The most extensive studies were performed by Steeds, Eades and colleagues. They were the first to demonstrate the unique possibilities of the BC method and named it real space crystallography, which developed later into the somewhat similar but more powerful convergent beam method. Maybe, due to the difficulties in analysis, BCs have seldom been used in TEM, and then mainly to visualize different imperfections and transformations.


Author(s):  
Natalie J. Allen ◽  
David Stanley ◽  
Helen Williams ◽  
Sarah J. Irwin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document