Sperm competition risk and male genital anatomy: comparative evidence for reduced duration of female sexual receptivity in primates with penile spines

2002 ◽  
Vol 16 (2) ◽  
pp. 123-137 ◽  
Author(s):  
P. Stockley
Author(s):  
Zachariah Wylde ◽  
Angela Crean ◽  
Russell Bonduriansky

Abstract Ejaculate traits can be sexually selected and often exhibit heightened condition-dependence. However, the influence of sperm competition risk in tandem with condition-dependent ejaculate allocation strategies is relatively unstudied. Because ejaculates are costly to produce, high-condition males may be expected to invest more in ejaculates when sperm competition risk is greater. We examined the condition-dependence of ejaculate size by manipulating nutrient concentration in the juvenile (larval) diet of the neriid fly Telostylinus angusticollis. Using a fully factorial design we also examined the effects of perceived sperm competition risk (manipulated by allowing males to mate first or second) on the quantity of ejaculate transferred and stored in the three spermathecae of the female reproductive tract. To differentiate male ejaculates, we fed males nontoxic rhodamine fluorophores (which bind to proteins in the body) prior to mating, labeling their sperm red or green. We found that high-condition males initiated mating more quickly and, when mating second, transferred more ejaculate to both of the female’s posterior spermathecae. This suggests that males allocate ejaculates strategically, with high-condition males elevating their ejaculate investment only when facing sperm competition. More broadly, our findings suggest that ejaculate allocation strategies can incorporate variation in both condition and perceived risk of sperm competition.


2000 ◽  
Vol 874 (1) ◽  
pp. 24-29 ◽  
Author(s):  
J.D. Caldwell ◽  
B.D. Moe ◽  
J. Hoang ◽  
T. Nguyen

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2077 ◽  
Author(s):  
Adolfo Cordero-Rivera

Postcopulatory sexual selection may favour mechanisms to reduce sperm competition, like physical sperm removal by males. To investigate the origin of sperm removal, I studied the reproductive behaviour and mechanisms of sperm competition in the only living member of the oldest damselfly family,Hemiphlebia mirabilis, one species that was considered extinct in the 1980s. This species displays scramble competition behaviour. Males search for females with short flights and both sexes exhibit a conspicuous “abdominal flicking”. This behaviour is used by males during an elaborate precopulatory courtship, unique among Odonata. Females use a similar display to reject male attempts to form tandem, but eventually signal receptivity by a particular body position. Males immobilise females during courtship using their legs, which, contrarily to other damselflies, never autotomise. Copulation is short (range 4.1–18.7 min), and occurs in two sequential stages. In the first stage, males remove part of the stored sperm, and inseminate during the second stage, at the end of mating. The male genital ligula matches the size and form of female genitalia, and ends by two horns covered by back-oriented spines. The volume of sperm in females before copulation was 2.7 times larger than the volume stored in females whose copulation was interrupted at the end of stage I, indicative of a significant sperm removal. These results point out that sperm removal is an old character in the evolution of odonates, possibly dating back to the Permian.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 75 ◽  
Author(s):  
David Bierbach ◽  
Amber M Makowicz ◽  
Ingo Schlupp ◽  
Holger Geupel ◽  
Bruno Streit ◽  
...  

Male reproductive biology can by characterized through competition over mates as well as mate choice. Multiple mating and male mate choice copying, especially in internally fertilizing species, set the stage for increased sperm competition, i.e., sperm of two or more males can compete for fertilization of the female’s ova. In the internally fertilizing fish Poecilia mexicana, males respond to the presence of rivals with reduced expression of mating preferences (audience effect), thereby lowering the risk of by-standing rivals copying their mate choice. Also, males interact initially more with a non-preferred female when observed by a rival, which has been interpreted in previous studies as a strategy to mislead rivals, again reducing sperm competition risk (SCR). Nevertheless, species might differ consistently in their expression of aggressive and reproductive behaviors, possibly due to varying levels of SCR. In the current study, we present a unique data set comprising ten poeciliid species (in two cases including multiple populations) and ask whether species can be characterized through consistent differences in the expression of aggression, sexual activity and changes in mate choice under increased SCR. We found consistent species-specific differences in aggressive behavior, sexual activity as well as in the level of misleading behavior, while decreased preference expression under increased SCR was a general feature of all but one species examined. Furthermore, mean sexual activity correlated positively with the occurrence of potentially misleading behavior. An alternative explanation for audience effects would be that males attempt to avoid aggressive encounters, which would predict stronger audience effects in more aggressive species. We demonstrate a positive correlation between mean aggressiveness and sexual activity (suggesting a hormonal link as a mechanistic explanation), but did not detect a correlation between aggressiveness and audience effects. Suites of correlated behavioral tendencies are termed behavioral syndromes, and our present study provides correlational evidence for the evolutionary significance of SCR in shaping a behavioral syndrome at the species level across poeciliid taxa.


2021 ◽  
Author(s):  
Chuan Zhou ◽  
Tao Wang ◽  
Biyang Jing ◽  
Bowen Deng ◽  
Kai Shi ◽  
...  

Female sexual behavior as an innate behavior is of prominent biological importance for survival and reproduction. However, molecular and circuit mechanisms underlying female sexual behavior is not well understood. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) promotes female sexual behavior in Drosophila. Manipulation both Dsk and DSK neuronal activity impact female sexual receptivity. In addition, we reveal that Dsk-expressing neurons receive input signal from R71G01GAL4 neurons to promote female sexual receptivity. Based on intersectional technique, we further found the regulation of female sexual behavior relies mainly on medial DSK neurons rather than lateral DSK neurons, and medial DSK neurons modulate female sexual behavior by acting on its receptor CCKLR-17D3. Thus, we characterized DSK/CCKLR-17D3 as R71G01GAL4 neurons downstream signaling to regulate female sexual behavior.


2018 ◽  
Vol 14 (1) ◽  
pp. 20170659 ◽  
Author(s):  
Nadia S. Sloan ◽  
Maxine Lovegrove ◽  
Leigh W. Simmons

A considerable body of evidence supports the prediction that males should increase their expenditure on the ejaculate in response to sperm competition risk. The prediction that they should reduce their expenditure with increasing sperm competition intensity is less well supported. Moreover, most studies have documented plasticity in sperm numbers. Here we show that male crickets Teleogryllus oceanicus exhibit reduced seminal fluid gene expression and accessory gland mass in response to elevated sperm competition intensity. Together with previous research, our findings suggest that strategic adjustments in seminal fluid composition contribute to competitive fertilization success in this species.


Sign in / Sign up

Export Citation Format

Share Document