scholarly journals Nitrogen deposition, terrestrial carbon uptake and changes in the seasonal cycle of atmospheric CO2

1999 ◽  
Vol 26 (21) ◽  
pp. 3313-3316
Author(s):  
David J. Erickson
2013 ◽  
Vol 10 (7) ◽  
pp. 11077-11109 ◽  
Author(s):  
G. Bala ◽  
N. Devaraju ◽  
R. K. Chaturvedi ◽  
K. Caldeira ◽  
R. Nemani

Abstract. Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12–17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.


2014 ◽  
Vol 14 (1) ◽  
pp. 133-141 ◽  
Author(s):  
O. Schneising ◽  
M. Reuter ◽  
M. Buchwitz ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. The terrestrial biosphere is currently acting as a net carbon sink on the global scale, exhibiting significant interannual variability in strength. To reliably predict the future strength of the land sink and its role in atmospheric CO2 growth, the underlying biogeochemical processes and their response to a changing climate need to be well understood. In particular, better knowledge of the impact of key climate variables such as temperature or precipitation on the biospheric carbon reservoir is essential. It is demonstrated using nearly a decade of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) nadir measurements that years with higher temperatures during the growing season can be robustly associated with larger growth rates in atmospheric CO2 and smaller seasonal cycle amplitudes for northern mid-latitudes. We find linear relationships between warming and CO2 growth as well as seasonal cycle amplitude at the 98% significance level. This suggests that the terrestrial carbon sink is less efficient at higher temperatures during the analysed time period. Unless the biosphere has the ability to adapt its carbon storage under warming conditions in the longer term, such a temperature response entails the risk of potential future sink saturation via a positive carbon-climate feedback. Quantitatively, the covariation between the annual CO2 growth rates derived from SCIAMACHY data and warm season surface temperature anomaly amounts to 1.25 ± 0.32 ppm yr−1 K−1 for the Northern Hemisphere, where the bulk of the terrestrial carbon sink is located. In comparison, this relationship is less pronounced in the Southern Hemisphere. The covariation of the seasonal cycle amplitudes retrieved from satellite measurements and temperature anomaly is −1.30 ± 0.31 ppm K−1 for the north temperate zone. These estimates are consistent with those from the CarbonTracker data assimilated CO2 data product, indicating that the temperature dependence of the model surface fluxes is realistic.


2013 ◽  
Vol 13 (8) ◽  
pp. 22733-22755 ◽  
Author(s):  
O. Schneising ◽  
M. Reuter ◽  
M. Buchwitz ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. The terrestrial biosphere is currently acting as a net carbon sink on the global scale exhibiting significant interannual variability in strength. To reliably predict the future strength of the land sink and its role in atmospheric CO2 growth the underlying processes and their response to a changing climate need to be well understood. In particular, better knowledge of the impact of key climate variables like temperature or precipitation on the biospheric carbon reservoir is essential. It is demonstrated using nearly a decade of SCIAMACHY nadir measurements that years with higher temperatures during the growing season can be robustly associated with larger growth rates in atmospheric CO2 and smaller seasonal cycle amplitudes for northern mid-latitudes. We find linear relationships between warming and CO2 growth as well as seasonal cycle amplitude at the 98% significance level. This suggests that the terrestrial carbon sink is less efficient at higher temperatures, which might lead to future sink saturation via a positive carbon-climate feedback. Quantitatively, the covariation between the annual CO2 growth rates derived from SCIAMACHY data and warm season surface temperature anomaly amounts to 1.25±0.32 ppm yr−1 K−1 for the Northern Hemisphere where the bulk of the terrestrial carbon sink is located. In comparison, the relation is less pronounced in the Southern Hemisphere. The covariation of the seasonal cycle amplitudes derived from satellite and temperature anomaly is −1.30±0.31 ppm K−1 for the north temperate zone. These estimates are consistent with those from the CarbonTracker data assimilated CO2 data product indicating that the temperature dependence of the model surface fluxes is realistic.


2013 ◽  
Vol 10 (11) ◽  
pp. 7147-7160 ◽  
Author(s):  
G. Bala ◽  
N. Devaraju ◽  
R. K. Chaturvedi ◽  
K. Caldeira ◽  
R. Nemani

Abstract. Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12–17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Trevor F. Keenan ◽  
I. Colin Prentice ◽  
Josep G. Canadell ◽  
Christopher A. Williams ◽  
Han Wang ◽  
...  

2021 ◽  
Vol 18 (10) ◽  
pp. 3219-3241
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone (O3) and nitrogen deposition affect vegetation growth and, thereby, the ability of the land biosphere to take up and store carbon. However, the magnitude of these effects on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O–CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, the O3-induced leaf injury, and the coupled terrestrial carbon and nitrogen cycles. We use this model to simulate past and future impacts of air pollution against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The simulated O3 effect on GPP in the Northern Hemisphere peaked towards the end of the 20th century, with reductions of 4 %, causing a reduction in the northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, O3-induced reductions in GPP and carbon storage are projected to decline, through a combination of direct air pollution control methods that reduce near-surface O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of O3 concurrent with increases of leaf-level water use efficiency. However, in hot spot regions such as East Asia, the model simulations suggest a sustained decrease in GPP by more than 8 % throughout the 21st century. O3 exposure reduces projected carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US, and East Asia. Our simulations suggest that the stimulating effect of nitrogen deposition on regional GPP and carbon storage is lower in magnitude compared to the detrimental effect of O3 during most of the simulation period for both RCPs. In the second half of the 21st century, the detrimental effect of O3 on GPP is outweighed by nitrogen deposition, but the effect of nitrogen deposition on land carbon storage remains lower than the effect of O3. Accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 may lead to an overestimation of projected carbon uptake and storage.


Sign in / Sign up

Export Citation Format

Share Document