Conditioning a multiple-patch SVAT Model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data

1999 ◽  
Vol 35 (9) ◽  
pp. 2751-2761 ◽  
Author(s):  
Stewart W. Franks ◽  
Keith J. Beven
2010 ◽  
Vol 7 (4) ◽  
pp. 6179-6205
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2019 ◽  
Vol 23 (12) ◽  
pp. 5033-5058
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The heterogeneity of Agroecosystems, in terms of hydric conditions, crop types and states, and meteorological forcing, is difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study with respect to the uncertain model inputs of two classical approaches used to map the evapotranspiration of agroecosystems: (1) a surface energy balance (SEB) model, the Two-Source Energy Balance (TSEB) model, forced with thermal infrared (TIR) data as a proxy for the crop hydric conditions, and (2) a soil–vegetation–atmosphere transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed from a soil water budget. To this end, the models' skill was compared using a large and unique in situ database covering different crops and climate conditions, which was acquired over three experimental sites in southern France and Morocco. On average, the models provide 30 min estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. A sensitivity analysis based on realistic errors aimed to estimate the potential decrease in performance induced by the spatialization process. For the SVAT model, the multi-objective calibration iterative procedure (MCIP) is used to determine and test different sets of parameters. TSEB is run with only one set of parameters and provides acceptable performance for all crop stages apart from the early growing season (LAI < 0.2 m2 m−2) and when hydric stress occurs. An in-depth study on the Priestley–Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partitioning between the sensible and latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8–2 were highlighted under cloudy conditions, which is of particular interest due to the emergence of low-altitude drone acquisition. Under developed vegetation (LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable trade-off for SEtHyS. This study provides some scientific elements regarding the joint use of both approaches and TIR imagery, via the development of new data assimilation and calibration strategies.


2010 ◽  
Vol 31 (14) ◽  
pp. 3885-3898 ◽  
Author(s):  
Tzu-Yin Chang ◽  
Yuei-An Liou ◽  
Chuan-Yao Lin ◽  
Shaw-Chen Liu ◽  
Yi-Chen Wang

2001 ◽  
Vol 106 (3) ◽  
pp. 215-231 ◽  
Author(s):  
Peter van der Keur ◽  
Søren Hansen ◽  
Kirsten Schelde ◽  
Anton Thomsen

2018 ◽  
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The overall purpose of our work is to take advantage of Thermal Infra-Red (TIR) imagery to estimate landscape evapotranspiration fluxes over agricultural areas, relying on two approaches of increasing complexity and input data needs: a Surface Energy Balance (SEB) model, TSEB, used directly at the landscape scale with TIR forcing, and the aggregation of a Soil-Vegetation-Atmosphere Transfer (SVAT) model, SEtHyS, run at high resolution (&amp;simeq;100 m) and constrained by assimilation of TIR data. Within this preliminary study, models skills are compared thanks to large in situ database covering different crops, stress and climate conditions. Domains of validity are assessed and the possible loss of performance resulting from inaccurate but realistic inputs (forcing and model parameters) due to scaling effects are quantified. The in situ data set came from 3 experiments carried out in southern France and in Morocco. On average, models provide half-hourly averaged estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. TSEB has been shown to be more flexible and requires one single set of parameters but lead to low performances on rising vegetation and stressed conditions. An in-depth study on the Priestley-Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partition between sensible and latent heat fluxes (1.5 and 1.25 for south-western France and Morocco, respectively). Optimal values of 1.8 to 2 were hilighted under cloudy conditions, which is of particular interest with the emergence of low altitude drone acquisition. SEtHyS is valid in more cases while it required a finer parameters tuning and a better knowledge of surface and vegetation. This study participates to lay the ground for exploring the complementarities between instantaneous and continuous dynamic evapotranspiration mapping monitored with TIR data.


Sign in / Sign up

Export Citation Format

Share Document