scholarly journals Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: Methodology and sensitivity to physical assumptions

2000 ◽  
Vol 105 (D9) ◽  
pp. 11721-11738 ◽  
Author(s):  
P. Rolland ◽  
K. N. Liou ◽  
M. D. King ◽  
S. C. Tsay ◽  
G. M. McFarquhar
2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


Author(s):  
K. H. Lee ◽  
K. T. Lee

The paper presents currently developing method of volcanic ash detection and retrieval for the Geostationary Korea Multi-Purpose Satellite (GK-2A). With the launch of GK-2A, aerosol remote sensing including dust, smoke, will begin a new era of geostationary remote sensing. The Advanced Meteorological Imager (AMI) onboard GK-2A will offer capabilities for volcanic ash remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Based on the physical principles for the current polar and geostationary imagers are modified in the algorithm. Volcanic ash is estimated in detection processing from visible and infrared channel radiances, and the comparison of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every 15 min for volcanic ash for pixel sizes of 2 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously, both over water and land. The algorithm has been tested with proxy data generated from existing satellite observations and forward radiative transfer simulations. Operational assessment of the algorithm will be made after the launch of GK-2A scheduled in 2018.


2017 ◽  
Author(s):  
Seminar Nasional Multidisiplin Ilmu 2017 ◽  
Ramos Lumban Tobing

Metode penginderaan jarak jauh (Remote Sensing) telah banyak digunakan dalam berbagai bidang termasuk diantaranya bidang tutupan lahan/vegetasi termasuk perkebunan. Produk dari penginderaan jauh tersebut banyak tersedia diantaranya NDVI (Normalized Difference Vegetation Index) dan EVI (Enhanced Vegetation Indeks) yang merupakan indikator proxy dari suatu lokasi atau kondisi tutupan lahan lokasi tersebut. Dari beberapa penilitian, NDVI telah banyak digunakan namun EVI masih belum banyak digunakan. Kami membandingkan pengaruh dari penggunaan NDVI dan EVI pada jumlah dan waktu perubahan yang terekam dengan menggunakan metode BFAST (Breaks For Additive Seasonal and Trend). Data yang digunakan adalah MODIS (Moderate Resolution Imaging Spectroradiometer)16 harian NDVI dan EVI berupa gambar komposit (06 April 2000 s.d. 16 November 2014) dari empat piksel (pixel 293,294,295 dan 296) disekitar menara fluks Aek Loba.Hasil penelitian menunjukkan bahwa EVI untuk pemantauan tutupan lahan di kawasan perkebunan tropis yang ditutupi oleh awan intens lebih baik dari NDVI itu. Meskipun demikian, penelitian lebih lanjut dengan meningkatkan resolusi spasial dari citra satelit untuk aplikasi NDVI sangat dianjurkan


2020 ◽  
Author(s):  
Jiecan Cui ◽  
Tenglong Shi ◽  
Yue Zhou ◽  
Dongyou Wu ◽  
Xin Wang ◽  
...  

Abstract. Snow is the most reflective natural surface on Earth and consequently plays an important role in Earth’s climate. Light-absorbing particles (LAPs) deposited on the snow surface can effectively decrease snow albedo, resulting in positive radiative forcing. In this study, we used remote sensing data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and the Snow, Ice, and Aerosol Radiative (SNICAR) model to quantify the reduction in snow albedo due to LAPs, before validating and correcting the data against in situ observations. We then incorporated these corrected albedo reduction data in the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model to estimate Northern Hemisphere radiative forcing in January and February for the period 2003–2018. Our analysis reveals an average corrected reduction in snow albedo of ~0.0246, with instantaneous radiative forcing and daily radiative forcing values of ~5.87 and ~1.69 W m−2, respectively. We also observed significant spatial variations in corrected snow albedo reduction, instantaneous radiative forcing and daily radiative forcing throughout the Northern Hemisphere, with the lowest respective values (~0.0123, ~1.09 W m−2, and ~0.29 W m−2) occurring in the Arctic and the highest (~0.1669, ~36.02 W m−2, and ~10.60 W m−2) in northeastern China. From MODIS retrievals, we determined that the LAP content of snow accounts for 57.6 % and 37.2 % of the spatial variability in Northern Hemisphere albedo reduction and radiative forcing, respectively. We also compared retrieved radiative forcing values with those of earlier studies, including local-scale observations, remote-sensing retrievals, and model-based estimates. Ultimately, estimates of radiative forcing based on satellite-retrieved data are shown to represent true conditions on both regional and global scales.


2019 ◽  
Vol 11 (3) ◽  
pp. 314 ◽  
Author(s):  
Rita Condé ◽  
Jean-Michel Martinez ◽  
Marco Pessotto ◽  
Raúl Villar ◽  
Gérard Cochonneau ◽  
...  

In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.


Sign in / Sign up

Export Citation Format

Share Document