scholarly journals The 2.5 THz heterodyne spectrometer THOMAS: Measurement of OH in the middle atmosphere and comparison with photochemical model results

2000 ◽  
Vol 105 (D17) ◽  
pp. 22211-22223 ◽  
Author(s):  
Christoph R. Englert ◽  
Birger Schimpf ◽  
Manfred Birk ◽  
Franz Schreier ◽  
Michael Krocka ◽  
...  
2013 ◽  
Vol 6 (3) ◽  
pp. 4677-4703 ◽  
Author(s):  
K. Hallgren ◽  
P. Hartogh ◽  
C. Jarchow

Abstract. We have developed a new, high time-resolution, microwave heterodyne spectrometer for observations of water vapour in the middle atmosphere. It measures the rotational transition of water vapour at 22.235 GHz in the vertical and horizontal polarisation. The two polarisations are averaged in order to optimise the signal-to-noise ratio. The different polarisations have separate, but identical, signal chains consisting of a 22 GHz cooled HEMT amplifier, a second, warm, 22 GHz HEMT booster amplifier, an IF stage and a Chirp Transform Spectrometer (CTS) backend. Continuous calibration with two internal loads kept at temperatures close to the observed atmosphere, a wobbling optical table to reduce standing waves in the optical path and the low receiver temperature ensures a time resolution of an order of magnitude better than what has been achieved by earlier instruments. The error sources in the retrieved spectrum are discussed and the data is compared and validated against EOS-MLS on the NASA Aura satellite. The profiles are found to be in good agreement with each other.


2002 ◽  
Vol 41 (7) ◽  
pp. 1343 ◽  
Author(s):  
John M. Harlander ◽  
Fred L. Roesler ◽  
Joel G. Cardon ◽  
Christoph R. Englert ◽  
Robert R. Conway

2020 ◽  
Vol 125 (24) ◽  
Author(s):  
Clara Orbe ◽  
David Rind ◽  
Jeffrey Jonas ◽  
Larissa Nazarenko ◽  
Greg Faluvegi ◽  
...  

1985 ◽  
Author(s):  
I. NOLT ◽  
J. RADOSTITZ ◽  
K.V. CHANCE ◽  
W. TRAUB ◽  
P. ADE

2020 ◽  
Vol 12 (5) ◽  
pp. 803-815
Author(s):  
B. N. Chetverushkin ◽  
I. V. Mingalev ◽  
E. A. Fedotova ◽  
K. G. Orlov ◽  
V. M. Chechetkin ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Sign in / Sign up

Export Citation Format

Share Document