Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa

2003 ◽  
Vol 108 (D16) ◽  
Author(s):  
N. W. Arnell
2017 ◽  
pp. 189-195
Author(s):  
N.S. Loboda ◽  
Y.V. Bozhok

The actuality of research is conditioned by necessity of water regime determination under climate change for substantiate management its water resources in future. The purpose of investigation is evaluation of changes in water resources of Kuyalnyk Liman catchment under climate change. The main method of research is model "climate- runoff ", developed at the Odessa State Environmental University. Database of global climate change scenarios A1B (realized in regional climate model REMO) and A2 (developed under the regional climate model RCA) was used. The analysis of fluctuation regularity of climatic factors of the flow formation on the Kuyalnyk  Liman catchment and surrounding areas according to selected scenarios using  difference-integral curves are done. Changes in precipitation and the maximum possible evaporation for the 30-year intervals up to the year 2100 (scenario A1D) or up to the year 2050 (scenario A2) are analyzed. The main tendencies in water resources of Kuyalnyk Liman using the model "climate- runoff" in the future are established. It is shown that according to the scenario A1B by the middle of XXI century possible reduction of water resources in the Kuyalnyk Liman catchment is 40%. According to the scenario A2 water resources in northern part of the basin can grow on average by 20-30%, and in the southern part runoff can be reduced on average by 10%.


2017 ◽  
Vol 49 (11-12) ◽  
pp. 3813-3838 ◽  
Author(s):  
Thierry C. Fotso-Nguemo ◽  
Derbetini A. Vondou ◽  
Wilfried M. Pokam ◽  
Zéphirin Yepdo Djomou ◽  
Ismaïla Diallo ◽  
...  

2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


Sign in / Sign up

Export Citation Format

Share Document