scholarly journals Ion injections and magnetic field oscillations near the high-latitude magnetopause associated with solar wind dynamic pressure enhancement

Author(s):  
G. Lu
2006 ◽  
Vol 24 (11) ◽  
pp. 3011-3026 ◽  
Author(s):  
F. Pitout ◽  
C. P. Escoubet ◽  
B. Klecker ◽  
H. Rème

Abstract. We present a statistical study of four years of Cluster crossings of the mid-altitude cusp. In this first part of the study, we start by introducing the method we have used a) to define the cusp properties, b) to sort the interplanetary magnetic field (IMF) conditions or behaviors into classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Out of the 920 passes that we have analyzed, only 261 fulfill our criteria and are considered as cusp crossings. We look at the size, location and dynamics of the mid-altitude cusp under various IMF orientations and solar wind conditions. For southward IMF, Bz rules the latitudinal dynamics, whereas By governs the zonal dynamics, confirming previous works. We show that when |By| is larger than |Bz|, the cusp widens and its location decorrelates from By. We interpret this feature in terms of component reconnection occurring under By-dominated IMF. For northward IMF, we demonstrate that the location of the cusp depends primarily upon the solar wind dynamic pressure and upon the Y-component of the IMF. Also, the multipoint capability of Cluster allows us to conclude that the cusp needs typically more than ~20 min to fully adjust its location and size in response to changes in external conditions, and its speed is correlated to variations in the amplitude of IMF-Bz. Indeed, the velocity in °ILAT/min of the cusp appears to be proportional to the variation in Bz in nT: Vcusp=0.024 ΔBz. Finally, we observe differences in the behavior of the cusp in the two hemispheres. Those differences suggest that the cusp moves and widens more freely in the summer hemisphere.


2015 ◽  
Vol 33 (6) ◽  
pp. 637-656 ◽  
Author(s):  
P. Prikryl ◽  
R. Ghoddousi-Fard ◽  
E. G. Thomas ◽  
J. M. Ruohoniemi ◽  
S. G. Shepherd ◽  
...  

Abstract. The interval of geomagnetic storms of 7–17 March 2012 was selected at the Climate and Weather of the Sun-Earth System (CAWSES) II Workshop for group study of space weather effects during the ascending phase of solar cycle 24 (Tsurutani et al., 2014). The high-latitude ionospheric response to a series of storms is studied using arrays of GPS receivers, HF radars, ionosondes, riometers, magnetometers, and auroral imagers focusing on GPS phase scintillation. Four geomagnetic storms showed varied responses to solar wind conditions characterized by the interplanetary magnetic field (IMF) and solar wind dynamic pressure. As a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and high solar wind dynamic pressure resulted in the strongest scintillation in the nightside auroral oval. Scintillation occurrence was correlated with ground magnetic field perturbations and riometer absorption enhancements, and collocated with mapped auroral emission. During periods of southward IMF, scintillation was also collocated with ionospheric convection in the expanded dawn and dusk cells, with the antisunward convection in the polar cap and with a tongue of ionization fractured into patches. In contrast, large northward IMF combined with a strong solar wind dynamic pressure pulse was followed by scintillation caused by transpolar arcs in the polar cap.


2005 ◽  
Vol 110 (A11) ◽  
Author(s):  
Chihiro Tao ◽  
Ryuho Kataoka ◽  
Hiroshi Fukunishi ◽  
Yukihiro Takahashi ◽  
Takaaki Yokoyama

2004 ◽  
Vol 22 (8) ◽  
pp. 2989-2996 ◽  
Author(s):  
Y. P. Maltsev ◽  
A. A. Ostapenko

Abstract. Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF) z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.


2006 ◽  
Vol 24 (12) ◽  
pp. 3467-3480 ◽  
Author(s):  
M. Palmroth ◽  
T. V. Laitinen ◽  
T. I. Pulkkinen

Abstract. We use the global MHD model GUMICS-4 to investigate the energy and mass transfer through the magnetopause and towards the closed magnetic field as a response to the interplanetary magnetic field (IMF) clock angle θ=arctan (BY/BZ), IMF magnitude, and solar wind dynamic pressure. We find that the mass and energy transfer at the magnetopause are different both in spatial characteristics and in response to changes in the solar wind parameters. The energy transfer follows best the sin2 (θ/2) dependence, although there is more energy transfer after large energy input, and the reconnection line follows the IMF rotation with a delay. There is no clear clock angle dependence in the net mass transfer through the magnetopause, but the mass transfer through the dayside magnetopause and towards the closed field occurs preferably for northward IMF. The energy transfer occurs through areas at the magnetopause that are perpendicular to the subsolar reconnection line. In contrast, the mass transfer occurs consistently along the reconnection line, both through the magnetopause and towards the closed field. Both the energy and mass transfer are enhanced in response to increased solar wind dynamic pressure, while increasing the IMF magnitude does not affect the transfer quantities as much.


1997 ◽  
Vol 15 (2) ◽  
pp. 217-230 ◽  
Author(s):  
C. J. Davis ◽  
M. N. Wild ◽  
M. Lockwood ◽  
Y. K. Tulunay

Abstract. Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices Kp, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, foF2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, δfoF2. For the southward turnings with a change in Bz of δBz > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, foF2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about –60 nT. Four days later, the index has still to fully recover and is at about –25 nT. Both the Kp and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like Kp, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of δfoF2 values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where δBz > 11.5 nT and P ≤ 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in δfoF2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on δBz. At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.


Sign in / Sign up

Export Citation Format

Share Document