scholarly journals Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity

2003 ◽  
Vol 108 (C11) ◽  
Author(s):  
H. E. Markus Meier
2020 ◽  
Author(s):  
Piia Post ◽  
Andreas Lehmann

<p>A detailed assessment of climate variability of the Baltic Sea area for the period 1958-2008 (Lehmann et al. 2011) revealed that changes in the warming trend since the mid-1980s, were associated with changes in the large-scale atmospheric circulation over the North Atlantic. The analysis of winter sea level pressure (SLP) data highlighted considerable changes in intensification and location of storm tracks, in parallel with the eastward shift of the North Atlantic Oscillation (NAO) centres of action. Additionally, a seasonal shift of strong wind events from autumn to winter and early spring exists for the Baltic area. Lehmann et al. (2002) showed that different atmospheric circulation regimes force different circulation patterns in the Baltic Sea. Furthermore, as atmospheric circulation, to a large extent, controls patterns of water circulation and biophysical aspects relevant for biological production, such as the vertical distribution of temperature and salinity, alterations in weather regimes may severely impact the trophic structure and functioning of marine food webs (Hinrichsen et al. 2007). To understand the processes linking changes in the marine environment and climate variability, it is essential to investigate all components of the climate system which of course include also the large-scale atmospheric circulation. Now, since extended time series data (1948-2018) for additional 20 years are available, it is interesting to investigate recent changes/shifts of the large-scale atmospheric conditions and their impact on the wind climate over the Baltic Sea area.</p>


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227714 ◽  
Author(s):  
Sanna Majaneva ◽  
Emil Fridolfsson ◽  
Michele Casini ◽  
Catherine Legrand ◽  
Elin Lindehoff ◽  
...  

2016 ◽  
Vol 13 (15) ◽  
pp. 4595-4613 ◽  
Author(s):  
Alison L. Webb ◽  
Emma Leedham-Elvidge ◽  
Claire Hughes ◽  
Frances E. Hopkins ◽  
Gill Malin ◽  
...  

Abstract. The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075–1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today; however, emissions of biogenic sulfur could significantly decrease in this region.


2009 ◽  
Vol 6 (2) ◽  
pp. 1757-1817 ◽  
Author(s):  
R. Feistel ◽  
S. Weinreben ◽  
H. Wolf ◽  
S. Seitz ◽  
P. Spitzer ◽  
...  

Abstract. The brackish water of the Baltic Sea is a mixture of ocean water from the Atlantic/North Sea with fresh water from various rivers draining a large area of lowlands and mountain ranges. The evaporation-precipitation balance results in an additional but minor excess of fresh water. The rivers carry different loads of salts washed out of the ground, in particular calcium carbonate, which cause a composition anomaly of the salt dissolved in the Baltic Sea in comparison to Standard Seawater. Directly measured seawater density shows a related anomaly when compared to the density computed from the equation of state as a function of Practical Salinity, temperature and pressure. Samples collected from different regions of the Baltic Sea during 2006–2009 were analysed for their density anomaly. The results obtained for the river load deviate significantly from similar measurements carried out forty years ago; the reasons for this decadal variability are not yet fully understood. An empirical formula is derived which estimates Absolute from Practical Salinity of Baltic Sea water, to be used in conjunction with the new Thermodynamic Equation of Seawater 2010 (TEOS-10), endorsed by IOC/UNESCO in June 2009 as the substitute for the 1980 International Equation of State, EOS-80. Our routine measurements of the samples were accompanied by studies of additional selected properties which are reported here: conductivity, density, chloride, bromide and sulphate content, total CO2 and alkalinity.


Sign in / Sign up

Export Citation Format

Share Document