scholarly journals Effects of sea ice dynamics on the Antarctic sea ice distribution in a coupled ocean atmosphere model

2004 ◽  
Vol 109 (C4) ◽  
Author(s):  
T. Ogura
1998 ◽  
Vol 27 ◽  
pp. 443-448 ◽  
Author(s):  
W. D. Hibler III ◽  
Petra Heil ◽  
Victoria I. Lytle

Due to frequent and intense storm systems moving across the Antarctic sea ice, ice drift and deformation fluctuate substantially. Observations of drilling buoys show inertial power to be a substantial component of ice drift and deformation. Because the inertial period at high latitudes is close to tidal periods, this peak can be amplified due to resonance. in practice, the energy dissipation by ice interaction plays a significant role in dampening out this inertial energy. in present sea-ice dynamics models both with and without ice interaction, this inertial motion is overdamped due to the underestimation of coupling to the ocean boundary layer. To develop a more consistent treatment of ice drift under fluctuating wind fields, we consider here a vertically integrated formulation of the ice-ocean boundary-layer system that incorporates a more realistic treatment of the upper ocean. Under steady wind conditions this model reduces to the normal water-drag formulation used in most sea-ice dynamics models. Simulations using this “imbedded” model are analyzed to elucidate the role of ice interaction in the Antarctic ice-pack in modifying the high-frequency motion and inducing deformation which in turn significantly impact ice-thickness characteristics. The simulations demonstrate that in an interacting ice field in the presence of kinematic waves inertial imbedding can lead to oscillations in ice concentration of up to ~10% open water. These variations are similar in magnitude to observed deformation fluctuations in tide-free regions.


Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
W. M. Connolley ◽  
A. B. Keen ◽  
A. J. McLaren

Abstract. We present results of an implementation of the Elastic Viscous Plastic (EVP) sea ice dynamics scheme into the Hadley Centre coupled ocean-atmosphere climate model HadCM3. Although the large-scale simulation of sea ice in HadCM3 is quite good with this model, the lack of a full dynamical model leads to errors in the detailed representation of sea ice and limits our confidence in its future predictions. We find that introducing the EVP scheme results in a worse initial simulation of the sea ice. This paper documents various enhancements made to improve the simulation, resulting in a sea ice simulation that is better than the original HadCM3 scheme overall. Importantly, it is more physically based and provides a more solid foundation for future development. We then consider the interannual variability of the sea ice in the new model and demonstrate improvements over the HadCM3 simulation.


2006 ◽  
Vol 44 ◽  
pp. 361-366 ◽  
Author(s):  
P. Heil ◽  
C.W. Fowler ◽  
S.E. Lake

AbstractSea-ice velocities derived from remotely Sensed microwave imagery of the Special Sensor Microwave/Imager (SSM/I) have been analyzed for changes over time in Antarctic Sea-ice velocity, for the period 1988–2004. Year-to-year variability in mean Antarctic annual SSM/I-derived ice Speed is Small (17 year Standard deviation (SD) = 0.008 ms–1), with greater interannual variability in the zonal (eastward positive) velocity components (17 year SD = 0.016ms–1). Seasonally, minimum ice Speed is encountered during Summer, when nearly all Antarctic Sea ice is within the marginal ice zone. Ice motion peaks during winter and Spring, due to high velocities encountered in the outer pack of the Seasonal Sea-ice zone. The correlation (R2 = 0.47) between winter Southern Annular Mode (SAM) and mean winter ice Speed highlights the importance of atmospheric forcing on Sea-ice dynamics. The Spatial pattern of the correlation of the Standardized SAM index with the June–November ice Speed exhibits a wave-3 pattern, which matches the Sea-level pressure distribution. Sea-ice Speed in the upstream regions of quasi-stationary centres of low Sea-level pressure is likely to increase (decrease) during high (low) SAMyears, and the opposite for Sea-ice Speed in the downstream regions of the centres.


2017 ◽  
Vol 30 (15) ◽  
pp. 5775-5790 ◽  
Author(s):  
Matthew H. England ◽  
David K. Hutchinson ◽  
Agus Santoso ◽  
Willem P. Sijp

The response of the global climate system to Drake Passage (DP) closure is examined using a fully coupled ocean–atmosphere–ice model. Unlike most previous studies, a full three-dimensional atmospheric general circulation model is included with a complete hydrological cycle and a freely evolving wind field, as well as a coupled dynamic–thermodynamic sea ice module. Upon DP closure the initial response is found to be consistent with previous ocean-only and intermediate-complexity climate model studies, with an expansion and invigoration of the Antarctic meridional overturning, along with a slowdown in North Atlantic Deep Water (NADW) production. This results in a dominance of Southern Ocean poleward geostrophic flow and Antarctic sinking when DP is closed. However, within just a decade of DP closure, the increased southward heat transport has melted back a substantial fraction of Antarctic sea ice. At the same time the polar oceans warm by 4°–6°C on the zonal mean, and the maximum strength of the Southern Hemisphere westerlies weakens by ≃10%. These effects, not captured in models without ice and atmosphere feedbacks, combine to force Antarctic Bottom Water (AABW) to warm and freshen, to the point that this water mass becomes less dense than NADW. This leads to a marked contraction of the Antarctic overturning, allowing NADW to ventilate the abyssal ocean once more. Poleward heat transport settles back to very similar values as seen in the unperturbed DP open case. Yet remarkably, the equilibrium climate in the closed DP configuration retains a strong Southern Hemisphere warming, similar to past studies with no dynamic atmosphere. However, here it is ocean–atmosphere–ice feedbacks, primarily the ice-albedo feedback and partly the weakened midlatitude jet, not a vigorous southern sinking, which maintain the warm polar oceans. This demonstrates that DP closure can drive a hemisphere-scale warming with polar amplification, without the presence of any vigorous Southern Hemisphere overturning circulation. Indeed, DP closure leads to warming that is sufficient over the West Antarctic Ice Sheet region to inhibit ice-sheet growth. This highlights the importance of the DP gap, Antarctic sea ice, and the associated ice-albedo feedback in maintaining the present-day glacial state over Antarctica.


2017 ◽  
Vol 11 (3) ◽  
pp. 1387-1402 ◽  
Author(s):  
Verena Haid ◽  
Doroteaciro Iovino ◽  
Simona Masina

Abstract. In a warming climate, satellite data indicate that the sea ice extent around Antarctica has increased over the last decades. One of the suggested explanations is the stabilizing effect of increased mass loss of the Antarctic ice sheet. Here, we investigate the sea ice response to changes in both the amount and the spatial distribution of freshwater input to the ocean by comparing a set of numerical sensitivity simulations with additional supply of water at the Antarctic ocean surface. We analyze the short-term response of the sea ice cover and the on-shelf water column to variations in the amount and distribution of the prescribed surface freshwater flux.Our results confirm that enhancing the freshwater input can increase the sea ice extent. Our experiments show a negative development of the sea ice extent only for extreme freshwater additions. We find that the spatial distribution of freshwater is of great influence on sea ice concentration and thickness as it affects sea ice dynamics and thermodynamics. For strong regional contrasts in the freshwater addition the dynamic response dominates the local change in sea ice, which generally opposes the thermodynamic response. Furthermore, we find that additional coastal runoff generally leads to fresher and warmer dense shelf waters.


1997 ◽  
Vol 50 (4) ◽  
pp. 759 ◽  
Author(s):  
Ian Allison

The Antarctic sea ice zone undergoes one of the greatest seasonal surface changes on Earth, with an annual change in extent of around 15 × 10 6 km 2 . This ice, and its associated snow cover, plays a number of important roles in the ocean-atmosphere climate system: the high albedo ice cover restricts surface absorption of solar radiation and acts as a barrier to the exchange of mass and energy between the ocean and atmosphere, and salt rejected by the growing ice cover affects the ocean structure and circulation. Additionally, a number of sea ice feedback processes have the potential to play an important role in climate change. The extent to which a sea ice cover modifies ocean-atmosphere interaction is primarily determined by the thickness and concentration of the ice, but these themselves are determined by ocean and atmospheric interaction. The thickness distribution of the pack is determined by both thermodynamic and dynamic processes: most important at the geophysical scale are the dynamic processes of ice drift and deformation, and of lead formation. Compared to the ice cover in the central Arctic Basin, the Antarctic sea ice is highly mobile. Drifting buoy studies show that the Antarctic pack can move at speeds of up to 60 km per day or greater, and that around most of the Antarctic coast, the drift of the pack ice is generally divergent, with divergence rates of 10% or more per day being observed under some circumstances. Consequently there is generally some open water within the Antarctic pack and much of the total ice mass forms by rapid growth within these areas. This influences the crystal structure of the ice and results in a considerable portion of the Antarctic pack (up to 25% in spring-time) having a thickness of less than 0 · 3 m. In general much of the Antarctic sea ice only grows thermodynamically to about 0·5 m thick, with thickness increases beyond that resulting from the deformational processes of rafting and ridge-building.


2009 ◽  
Vol 114 (C9) ◽  
Author(s):  
Petra Heil ◽  
Robert A. Massom ◽  
Ian Allison ◽  
Anthony P. Worby ◽  
Victoria I. Lytle

Sign in / Sign up

Export Citation Format

Share Document