Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean

2004 ◽  
Vol 109 (D6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Seong Soo Yum ◽  
James G. Hudson
2011 ◽  
Vol 11 (18) ◽  
pp. 9485-9501 ◽  
Author(s):  
J. V. Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


2021 ◽  
Vol 21 (12) ◽  
pp. 9497-9513
Author(s):  
Jack B. Simmons ◽  
Ruhi S. Humphries ◽  
Stephen R. Wilson ◽  
Scott D. Chambers ◽  
Alastair G. Williams ◽  
...  

Abstract. Aerosol measurements over the Southern Ocean have been identified as critical to an improved understanding of aerosol–radiation and aerosol–cloud interactions, as there currently exists significant discrepancies between model results and measurements in this region. The atmosphere above the Southern Ocean provides crucial insight into an aerosol regime relatively free from anthropogenic influence, yet its remoteness ensures atmospheric measurements are relatively rare. Here we present observations from the Polar Cell Aerosol Nucleation (PCAN) campaign, hosted aboard the RV Investigator during a summer (January–March) 2017 voyage from Hobart, Australia, to the East Antarctic seasonal sea ice zone. A median particle number concentration (condensation nuclei > 3 nm; CN3) of 354 (95 % CI 345–363) cm−3 was observed from the voyage. Median cloud condensation nuclei (CCN) concentrations were 167 (95 % CI 158–176) cm−3. Measured particle size distributions suggested that aerosol populations had undergone significant cloud processing. To understand the variability in aerosol observations, measurements were classified by meteorological variables. Wind direction and absolute humidity were used to identify different air masses, and aerosol measurements were compared based on these identifications. CN3 concentrations measured during SE wind directions (median 594 cm−3) were higher than those measured during wind directions from the NW (median 265 cm−3). Increased frequency of measurements from these wind directions suggests the influence of large-scale atmospheric transport mechanisms on the local aerosol population in the boundary layer of the East Antarctic seasonal ice zone. Modelled back trajectories imply different air mass histories for each measurement group, supporting this suggestion. CN3 and CCN concentrations were higher during periods where the absolute humidity was less than 4.3 gH2O/m3, indicative of free tropospheric or Antarctic continental air masses, compared to other periods of the voyage. Increased aerosol concentration in air masses originating close to the Antarctic coastline have been observed in numerous other studies. However, the smaller changes observed in the present analyses suggest seasonal differences in atmospheric circulation, including lesser impact of synoptic low-pressure systems in summer. Further measurements in the region are required before a more comprehensive picture of atmospheric circulation in this region can be captured and its influence on local aerosol populations understood.


2020 ◽  
Vol 20 (13) ◽  
pp. 8047-8062
Author(s):  
Joel Alroe ◽  
Luke T. Cravigan ◽  
Branka Miljevic ◽  
Graham R. Johnson ◽  
Paul Selleck ◽  
...  

Abstract. Cloud–radiation interactions over the Southern Ocean are not well constrained in climate models, in part due to uncertainties in the sources, concentrations, and cloud-forming potential of aerosol in this region. To date, most studies in this region have reported measurements from fixed terrestrial stations or a limited set of instrumentation and often present findings as broad seasonal or latitudinal trends. Here, we present an extensive set of aerosol and meteorological observations obtained during an austral summer cruise across the full width of the Southern Ocean south of Australia. Three episodes of continental-influenced air masses were identified, including an apparent transition between the Ferrel atmospheric cell and the polar cell at approximately 64∘ S, and accompanied by the highest median cloud condensation nuclei (CCN) concentrations, at 252 cm−3. During the other two episodes, synoptic-scale weather patterns diverted air masses across distances greater than 1000 km from the Australian and Antarctic coastlines, respectively, indicating that a large proportion of the Southern Ocean may be periodically influenced by continental air masses. In all three cases, a highly cloud-active accumulation mode dominated the size distribution, with up to 93 % of the total number concentration activating as CCN. Frequent cyclonic weather conditions were observed at high latitudes and the associated strong wind speeds led to predictions of high concentrations of sea spray aerosol. However, these modelled concentrations were not achieved due to increased aerosol scavenging rates from precipitation and convective transport into the free troposphere, which decoupled the air mass from the sea spray flux at the ocean surface. CCN concentrations were more strongly impacted by high concentrations of large-diameter Aitken mode aerosol in air masses which passed over regions of elevated marine biological productivity, potentially contributing up to 56 % of the cloud condensation nuclei concentration. Weather systems were vital for aerosol growth in biologically influenced air masses and in their absence ultrafine aerosol diameters were less than 30 nm. These results demonstrate that air mass meteorological history must be considered when modelling sea spray concentrations and highlight the potential importance of sub-grid-scale variability when modelling atmospheric conditions in the remote Southern Ocean.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kirsten N. Fossum ◽  
Jurgita Ovadnevaite ◽  
Darius Ceburnis ◽  
Manuel Dall’Osto ◽  
Salvatore Marullo ◽  
...  

Author(s):  
Yoshiaki Miyamoto

AbstractWe examined the sensitivity of the formation of moist convection to the number of aerosols that serve as cloud condensation nuclei (CCN) based on a set of numerical experiments using a nonhydrostatic model with a bin cloud microphysics model. Additionally, a linear stability analysis for an air parcel incorporating effects of the CCN number concentration (NCCN) has been conducted to further demonstrate the findings in numerical experiments. The results of the numerical experiments show that moist convection does not form when NCCN ≤ 10 cm−3. The sensitivity to NCCN can be divided into three regimes: when NCCN ≤ 10 cm−3, convection does not form or not fully develop; when 1 ≤ NCCN ≤ 102 cm−3, maximum vertical velocity increases with NCCN; and when NCCN ≥ 102 cm−3, the intensity of convection does not largely depend on NCCN. We demonstrate that the main reason convection does not form under environments with a small NCCN is that the time scale for condensation is longer than that to change environmental conditions. Given a supersaturated environment, fewer droplets form when NCCN is small and the size of droplets is potentially large. Consequently, the amount of latent heating is limited and the air parcel cannot obtain buoyancy within a reasonable time scale. Linear stability analysis using a parcel model considering the effect of NCCN without ice-phase processes shows unstable and stable regimes as a function of the number of droplets. The analytically obtained critical droplet number for the convection formation well corresponds to the minimum NCCN beyond which convection forms in the present numerical experiments.


2020 ◽  
Author(s):  
Laura Revell ◽  
Stefanie Kremser ◽  
Sean Hartery ◽  
Mike Harvey ◽  
Jane Mulcahy ◽  
...  

<p>With low concentrations of tropospheric aerosol, the Southern Ocean offers a "natural laboratory" for studies of aerosol–cloud interactions. Aerosols over the Southern Ocean are produced from biogenic activity in the ocean, which generates sulfate aerosol via dimethylsulfide (DMS) oxidation, and from strong winds and waves that lead to bubble bursting and sea spray emission. Here, we evaluate the representation of Southern Ocean aerosols in the Hadley Centre Global Environmental Model version 3, Global Atmosphere 7.1 (HadGEM3-GA7.1) chemistry–climate model. Compared with aerosol optical depth (AOD) observations from two satellite instruments (the Moderate Resolution Imaging Spectroradiometer, MODIS-Aqua c6.1, and the Multi-angle Imaging Spectroradiometer, MISR), the model simulates too-high AOD during winter and too-low AOD during summer. By switching off DMS emission in the model, we show that sea spray aerosol is the dominant contributor to AOD during winter. In turn, the simulated sea spray aerosol flux depends on near-surface wind speed. By examining MODIS AOD as a function of wind speed from the ERA-Interim reanalysis and comparing it with the model, we show that the sea spray aerosol source function in HadGEM3-GA7.1 overestimates the wind speed dependency. We test a recently developed sea spray aerosol source function derived from measurements made on a Southern Ocean research voyage in 2018. In this source function, the wind speed dependency of the sea spray aerosol flux is less than in the formulation currently implemented in HadGEM3-GA7.1. The new source function leads to good agreement between simulated and observed wintertime AODs over the Southern Ocean; however, it reveals partially compensating errors in DMS-derived AOD. While previous work has tested assumptions regarding the seawater climatology or sea–air flux of DMS, we test the sensitivity of simulated AOD, cloud condensation nuclei and cloud droplet number concentration to three atmospheric sulfate chemistry schemes. The first scheme adds DMS oxidation by halogens and the other two test a recently developed sulfate chemistry scheme for the marine troposphere; one tests gas-phase chemistry only, while the second adds extra aqueous-phase sulfate reactions. We show how simulated sulfur dioxide and sulfuric acid profiles over the Southern Ocean change as a result and how the number concentration and particle size of the soluble Aitken, accumulation and coarse aerosol modes are affected. The new DMS chemistry scheme leads to a 20% increase in the number concentration of cloud condensation nuclei and cloud droplets, which improves agreement with observations. Our results highlight the importance of atmospheric chemistry for simulating aerosols and clouds accurately over the Southern Ocean.</p>


1997 ◽  
Vol 352 (1350) ◽  
pp. 203-211 ◽  
Author(s):  
G. P. Ayers ◽  
J. M. Cainey ◽  
R. W. Gillett ◽  
J. P. Ivey

Measurements of atmospheric sulphur species made in Southern Ocean air, at the Cape Grim Baseline Air Pollution Station, are reviewed in an attempt to discern the role played by oceanic emissions of dimethyl sulphide (DMS) as a source of cloud condensation nuclei (CCN). Consistent with conclusions reached by others, our data indicate that the connection between DMS concentration and CCN concentration is neither simple nor direct, being mediated through a range of chemical pathways and intermediate species that are subject to considerable variability over timescales ranging from minutes to months. Physical and meteorological processes are no less important than chemical processes as sources of complexity in the DMS to CCN transformation process. Moreover, the considerable uncertainty that currently exists about both the number of chemical pathways involved in DMS oxidation, and the kinetic coefficients associated with the proposed pathways, make quantitative modelling studies problematic. Nevertheless, synthesis of a large body of data available from Cape Grim and other Southern Ocean sites does permit some refinement of our understanding of the DMS–CCN connection. Here, these data are employed to illustrate the current state of knowledge about the connections between DMS, CCN and cloud properties at Cape Grim, and to highlight the many complexities that underlie these connections.


2007 ◽  
Vol 7 (2) ◽  
pp. 4481-4519 ◽  
Author(s):  
J. Vanderlei Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is no longer simply a radiative problem, but one affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and its consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of mutli-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


Sign in / Sign up

Export Citation Format

Share Document