scholarly journals Role of storm track activity in the interannual seesaw of summer precipitation over northern Eurasia

Author(s):  
Yoshiki Fukutomi
2016 ◽  
Vol 29 (7) ◽  
pp. 2557-2577 ◽  
Author(s):  
Lei Song ◽  
Lin Wang ◽  
Wen Chen ◽  
Yang Zhang

Abstract The East Asian trough (EAT) is a distinct component of the boreal winter circulation whose strength corresponds to the amplitude of the Northern Hemispheric stationary waves. In this study, the mechanism and climatic impacts of the intraseasonal variations of the EAT’s strength are investigated through composite analysis and dynamical diagnostics. The significant roles played by the low-frequency Rossby wave (RW) and synoptic transient eddy (TE) are revealed. Before the peaks of strong EAT events, an upper-tropospheric RW train propagates across northern Eurasia and interacts with preexisting surface cold anomalies over central Siberia. This pattern intensifies the Siberian high and causes RW convergence toward the EAT, leading to 30% of the EAT’s amplification directly via the RW-induced feedback forcing. Meanwhile, RW weakens the background baroclinicity and reduces TE activities near the entrance region of the North Pacific storm track. The TE-induced feedback forcing leads to another 30% of the EAT’s amplification. The evolution and dynamical processes of the weak EAT events generally resemble those of the strong events with opposite signs. These results are consistent with the knowledge on the mechanism of the strong and weak EAT events regarding the role of RWs with additional quantitative description and provide new insights regarding the role of TEs. Variations of the EAT’s strength exert significant climatic impacts on East Asia and its downstream region. Near-surface air temperature is below (above) normal over East Asia during the growth and peak stages of the strong (weak) EAT events and above (below) normal over North America afterward.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
A. Onuchin ◽  
Т. Burenina ◽  
А. Shvidenko ◽  
D. Prysov ◽  
A. Musokhranova

Abstract Background Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists. Influencing the components of total evaporation, forest vegetation makes a significant contribution to the process of runoff formation, but this process has specific features in different geographical zones. The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied. Results Based on the analysis of the dependence of river runoff on forest cover, using the example of nine catchments located in the forest-tundra, northern and middle taiga of Northern Eurasia, it is shown that the share of forest cover in the total catchment area (percentage of forest cover, FCP) has different effects on runoff formation. Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff, while in the southern direction (in the middle taiga) extensive woody cover of catchments “works” to reduce runoff. The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga. Conclusion The study of this problem allowed us to analyze various aspects of the hydrological role of forests, and to show that forest ecosystems, depending on environmental conditions and the spatial distribution of forest cover, can transform water regimes in different ways. Despite the fact that the process of river runoff formation is controlled by many factors, such as temperature conditions, precipitation regime, geomorphology and the presence of permafrost, the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover, at the level of catchments. The results obtained are consistent with the concept of geographic determinism, which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions. The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.


2021 ◽  
Vol 49 (1) ◽  
pp. 133-146
Author(s):  
T. A. Chikisheva ◽  
D. V. Pozdnyakov

On the basis of statistical analysis of craniometric data relating to Mesolithic and Neolithic samples from northern Eurasia, we discuss the peopling of the Baraba forest-steppe in the Early Holocene. This region is represented by samples from Sopka-2/1 (early sixth millennium BC), Protoka (late fifth to early fourth millennia BC), Korchugan (early-mid sixth millennium BC), and Vengerovo-2A (late sixth millennium BC). The results of the principal component analysis are interpreted in the context of debates over the role of autochthonous traditions in the Neolithic. During the Preboreal period (10 ka BP), large parts of the Baraba forest-steppe were flooded by the transgression of lake systems during climatic warming. This may have caused depopulation, lasting for at least a millennium. The Early Holocene people of Baraba were an offshoot of Meso-Neolithic populations of the northwestern Russian Plain. On that basis, the Early Neolithic populations of Baraba were formed. Direct population continuity is traceable only through the Chalcolithic. Since the late sixth millennium BC, however, the local population had incorporated migrants from the Pit-Comb Ware area in the central Russian Plain and, indirectly (via the Neolithic Altai), from the Cis-Baikal area.


2018 ◽  
Vol 31 (10) ◽  
pp. 4017-4039 ◽  
Author(s):  
Ayumu Miyamoto ◽  
Hisashi Nakamura ◽  
Takafumi Miyasaka

Abstract The south Indian Ocean is characterized by enhanced midlatitude storm-track activity around a prominent sea surface temperature (SST) front and unique seasonality of the surface subtropical Mascarene high. The present study investigates the climatological distribution of low-cloud fraction (LCF) and its seasonality by using satellite data, in order to elucidate the role of the storm-track activity and subtropical high. On the equatorward flank of the SST front, summertime LCF is locally maximized despite small estimated inversion strength (EIS) and high SST. This is attributable to locally augmented sensible heat flux (SHF) from the ocean under the enhanced storm-track activity, which gives rise to strong instantaneous wind speed while acting to relax the meridional gradient of surface air temperature. In the subtropics, summertime LCF is maximized off the west coast of Australia, while wintertime LCF is distributed more zonally across the basin unlike in other subtropical ocean basins. Although its zonally extended distribution is correspondent with that of LCF, EIS alone cannot explain the wintertime LCF enhancement, which precedes the EIS maximum under continuous lowering of SST and enhanced SHF in winter. Basinwide cold advection associated with the wintertime westward shift of the subtropical high contributes to the enhancement of SHF, especially around 15°–25°S, while seasonally enhanced storm-track activity augments SHF around 30°S. The analysis highlights the significance of large-scale controls, particularly through SHF, on the seasonality of the climatological LCF distribution over the south Indian Ocean, which reflect the seasonality of the Mascarene high and storm-track activity.


2009 ◽  
Vol 22 (24) ◽  
pp. 6536-6560 ◽  
Author(s):  
Bunmei Taguchi ◽  
Hisashi Nakamura ◽  
Masami Nonaka ◽  
Shang-Ping Xie

Abstract Influences of oceanic fronts in the Kuroshio and Oyashio Extension (KOE) region on the overlying atmosphere are investigated by comparing a pair of atmospheric regional model hindcast experiments for the 2003/04 cold season, one with the observed finescale frontal structures in sea surface temperature (SST) prescribed at the model lower boundary and the other with an artificially smoothed SST distribution. The comparison reveals the locally enhanced meridional gradient of turbulent fluxes of heat and moisture and surface air temperature (SAT) across the oceanic frontal zone, which favors the storm-track development both in winter and spring. Distinct seasonal dependency is found, however, in how dominantly the storm-track activity influences the time-mean distribution of the heat and moisture supply from the ocean. In spring the mean surface sensible heat flux (SHF) is upward (downward) on the warmer (cooler) side of the subarctic SST front. This sharp cross-frontal contrast is a manifestation of intermittent heat release (cooling) induced by cool northerlies (warm southerlies) on the warmer (cooler) side of the front in association with migratory cyclones and anticyclones. The oceanic frontal zone is thus marked as both the largest variability in SHF and the cross-frontal sign reversal of the SHF skewness. The cross-frontal SHF contrasts in air–sea heat exchanges counteract poleward heat transport by those atmospheric eddies, to restore the sharp meridional gradient of SAT effectively for the recurrent development of atmospheric disturbances. Lacking this oceanic baroclinic adjustment associated with the SST front, the experiment with the smoothed SST distribution underestimates storm-track activity in the KOE region. In winter the prevailing cold, dry continental airflow associated with the Asian winter monsoon induces a large amount of heat and moisture release even from the cooler ocean to the north of the frontal zone. The persistent advective effects of the monsoonal wind weaken the SAT gradient and smear out the sign reversal of the SHF skewness, leading to weaker influences of the oceanic fronts on the atmosphere in winter than in spring.


2014 ◽  
Vol 27 (9) ◽  
pp. 3169-3207 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Hailan Wang ◽  
Randal D. Koster ◽  
Max J. Suarez ◽  
Pavel Ya. Groisman

Abstract This article reviews the understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA Goddard Earth Observing System model, version 5 (GEOS-5). Key new results are 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave); 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST; and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in the understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.


Sign in / Sign up

Export Citation Format

Share Document